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Summary  14 

1. The Mantel test is widely used in biology, including landscape ecology and genetics, to detect 15 

spatial structures in data or control for spatial correlation in the relationship between two data 16 

sets, e.g. community composition and environment. The paper demonstrates that this is an 17 

incorrect use of that test. 18 

2. The null hypothesis of the Mantel test differs from that of correlation analysis; the statistics 19 

computed in the two types of analyses differ. We examine the basic assumptions of the Mantel 20 

test in spatial analysis and show that they are not verified in most studies. We show the 21 

consequences, in terms of power, of the mismatch between these assumptions and the Mantel 22 

testing procedure. 23 

3. The Mantel test H0 is the absence of relationship between values in two dissimilarity matrices, 24 

not the independence between two random variables or data tables. The Mantel R2 differs from 25 

the R2 of correlation, regression and canonical analysis; these two statistics cannot be reduced to 26 

one another. Using simulated data, we show that in spatial analysis, the assumptions of linearity 27 

and homoscedasticity of the Mantel test (H1: small values of D1 correspond to small values of D2 28 

and large values of D1 to large values of D2) do not hold in most cases, except when spatial 29 

correlation extends over the whole study area. Using extensive simulations of spatially correlated 30 

data involving different representations of geographic relationships, we show that the power of 31 

the Mantel test is always lower than that of distance-based Moran’s eigenvector map (dbMEM) 32 

analysis, and that the Mantel R2 is always smaller than in dbMEM analysis, and un-interpretable. 33 

These simulation results are novel contributions to the Mantel debate. We also show that 34 

regression on a geographic distance matrix does not remove the spatial structure from response 35 

data and does not produce spatially uncorrelated residuals. 36 
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4. Our main conclusion is that Mantel tests should be restricted to questions that, in the domain of 37 

application, only concern dissimilarity matrices, and are not derived from questions that can be 38 

formulated as the analysis of the vectors and matrices from which one can compute dissimilarity 39 

matrices.  40 

Key-words: landscape ecology, landscape genetics, Mantel test, Moran’s eigenvector maps 41 

(MEM), network analysis, numerical simulations, redundancy analysis, spatially structured data 42 

 43 

Introduction  44 

The Mantel test was originally designed for analysing disease clustering in epidemiological 45 

studies. In that procedure, Mantel (1967) related a matrix of spatial distances and a matrix of 46 

temporal distances in a generalized regression approach. The procedure was expanded by Mantel 47 

and Valand (1970) to a nonparametric form of analysis of the relationship between two 48 

dissimilarity matrices computed from two sets of multivariate data concerning the same n 49 

individuals or sampling units. Since that paper, “the procedure, known as the Mantel test in the 50 

biological and environmental sciences, includes any analysis relating two distance matrices or, 51 

more generally, two resemblance or proximity matrices” (Legendre 2000).  52 

 In biology, Sokal (1979) was the first to use Mantel tests to study patterns of geographic 53 

variation in taxonomic data. In Sokal & Rohlf’s (1995) Biometry book, the Mantel test is 54 

presented as a general procedure to test the relationship between multivariate data tables 55 

expressed as dissimilarity matrices in biological problems; for these authors, the usefulness of the 56 

Mantel test derived from the fact that “in evolutionary biology and ecology, dissimilarity 57 

coefficients are frequently used to measure the degree of difference between individuals, 58 
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populations, species, or communities” (ibid. p. 813). A further generalization was proposed by 59 

Anselin (1995) who showed that indices of spatial autocorrelation such as Moran’s I and Geary’s 60 

c may be considered to be special cases of the Mantel statistic.  61 

 The discussion and criticisms formulated in this paper only concern the spatial analysis 62 

applications of the Mantel test in biology (ecology, genetics, evolutionary biology, landscape 63 

ecology and landscape genetics). They do not concern the original test developed by Mantel for 64 

epidemiological studies, where the question clearly involved the relationship between two types 65 

of distances (temporal and spatial) separating disease occurrences. 66 

 Applications to spatial analysis started when ecologists and geneticists discovered that a 67 

Mantel test offered an easy way of introducing spatial relationships, in the form of a geographic 68 

distance matrix, into a statistical framework for modelling multivariate data (Sokal 1979; 69 

Legendre & Troussellier 1988; Legendre & Fortin 1989; Urban 2006; Cushman et al. 2006). The 70 

Mantel test quickly became a favourite statistical procedure for researchers interested in spatial 71 

[or temporal] processes. That was before more appropriate and powerful statistical procedures, 72 

such as dbMEM analysis, used in the simulations reported in the present paper, became available; 73 

see Legendre et al. (2005), Legendre & Fortin (2010) and Dray et al. (2012). 74 

 The main thesis of this paper is that Mantel tests should be restricted to questions that, in 75 

the domain of application, only concern dissimilarity matrices, and are not derived from 76 

questions that can be formulated as the analysis of “raw data tables”, meaning the vectors and 77 

matrices from which one can compute dissimilarity or distance matrices. Matrices of geographic 78 

distances among sites derived from spatial coordinates are included in the cases where Mantel 79 

tests may be inappropriate. (1) We will show that the hypotheses of correlation tests of 80 

significance of raw data tables differ from the hypotheses that concern dissimilarity matrices; 81 
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furthermore, the statistics involved in the two types of analyses differ and cannot be reduced to 82 

one another. (2) We will refer to simulation papers that have shown that analyses in the world of 83 

raw data are consistently more powerful than in the world of dissimilarities when both 84 

approaches are possible. Appendix S1 retraces the history of the applications of the Mantel test to 85 

spatial data analysis and summarizes the most important simulation studies that have shown that 86 

the approach lacks statistical power by a broad margin. (3) We will focus on the basic 87 

assumptions of linearity and homoscedasticity of the Mantel test in spatial analysis. Simulations 88 

involving spatially autocorrelated data will show that these assumptions are not verified in most 89 

studies. (4) Finally, using again simulations of spatially autocorrelated data, we will show the 90 

consequences, in terms of power, of the mismatch between this assumption and the Mantel 91 

procedure. 92 

 Formally, a dissimilarity index (or coefficient) is a function that measures the difference 93 

between two vectors. A distance index is a special type of dissimilarity that satisfies the metric 94 

properties (minimum value of 0, positiveness, symmetry and triangle’s inequality); the Euclidean 95 

distance is the most widely used distance coefficient. In this paper, the general term dissimilarity 96 

will be used except to designate a spatial or temporal distance.  97 

What is t he null hypothesis of the Mantel test?  98 

Scientists who use Mantel tests when the analysis of raw data tables is possible are usually under 99 

the impression that the two types of methods are testing the same statistical hypothesis. For 100 

example, Guillot & Rousset (2013) wrote in the caption of their Fig. 2: “The null hypothesis 101 

tested [in the Mantel test] is the independence between x and y” (in that part of their paper, x and 102 

y are two random variables, cf. their Fig. 1; they are not dissimilarity matrices). That description 103 

of the null hypothesis would be correct for the test of a correlation coefficient between two 104 
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random variables. It is incorrect, however, for the Mantel test, which is a test of the absence of 105 

relationship between the dissimilarities in two dissimilarity matrices. A correct formulation of H0 106 

for the Mantel test is the following: “H0: The distances among objects in matrix DY are not 107 

(linearly or monotonically) related to the corresponding distances in DX” (Legendre & Legendre 108 

2012, p. 600; italics added for emphasis). Similar formulations of the Mantel null hypothesis are 109 

found in Legendre (2000, p. 41): “The simple Mantel test is a procedure to test the hypothesis 110 

that the distances among objects in a [distance] matrix A are linearly independent of the distances 111 

among the same objects in another [distance] matrix B” and in Legendre & Fortin (2010, p. 835). 112 

In partial Mantel test, mentioned in section “Assumptions of the Mantel test”, H0 states that 113 

ρ(AB.C) = 0, where A, B and C are dissimilarity matrices (Legendre 2000).  114 

 A complementary point is the demonstration by Legendre & Fortin (2010) (their eqs 1, 2 115 

and 9) that the statistic used in the Mantel test is unrelated to that used to test the R2 statistic in 116 

[multiple] linear regression or redundancy analysis (RDA), or the simple correlation coefficient r. 117 

Here we highlight the difference between the R2 statistics tested in redundancy analysis (which is 118 

the multivariate form of multiple linear regression) and in a Mantel test. 119 

• In [multiple] linear regression and RDA, R2 is the ratio of the sum of squared differences from 120 

the mean, or sum of squares (SS) for short, of the fitted values to the sum of squares of the data: 121 

 𝑅! = !!(𝐘!

!! ! ! !
 eqn 1 122 

whose denominator is  123 

 SS(Y) = 

!  

(yij " y j )
2

i=1:n
#

j=1:p
#   eqn 2 124 
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where n is the number of observations and p is the number of variables in matrix Y. This 125 

denominator can also be written as  126 

 SS(Y) = Dih
2

i>h
∑( ) / n   eqn 3 127 

Proof of this equivalence if found in Appendix A1 of Legendre & Fortin (2010). R2 represents the 128 

fraction of the total sum of squares of the response data Y that is explained by the explanatory 129 

variables X. 130 

• Consider now two dissimilarity matrices, DY and DX, computed from data vectors y and x or 131 

from matrices Y and X. String out the lower-diagonal portions of these matrices as long vectors 132 

dY and dX, each of length n(n – 1)/2. The Mantel correlation, rM, is the correlation coefficient 133 

between these two vectors. The square of rM is the coefficient of determination ! !
!  of the linear 134 

regression of dY on dX:  135 

 ! !
! !

!! (𝐝! )
!! (𝐝! )

 eqn 4 136 

The denominator of that equation is  137 

SS(dY) = 𝐷!!𝐘 − 𝐷𝐘 !
!!! ! ! !! 𝐘

! − !!!𝐘! ! !
!

! ! !! ! !/!! ! !   eqn 5 138 

This formula is written using dissimilarity values Dih to make it comparable to eqn 3. The 139 

important point here is that SS(dY) in eqn 5 is not equal to, is not a simple function of, and cannot 140 

be reduced to SS(Y) in eqn 3. They are different statistics, and so are R2 and ! !
! . 141 

 The statistic used in each test reflects its null hypothesis and, because the null hypotheses 142 

differ, the statistics also differ and are not interchangeable. Hence these two tests are not 143 
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equivalent. This demonstration completes our proof that the Mantel test is inappropriate to test a 144 

hypothesis of correlation between two data vectors or matrices of raw data.  145 

Assumptions of the Mantel test   146 

The Mantel test makes two strong assumptions about the relationships between the two sets of 147 

dissimilarities, D1 and D2, under comparison.  148 

• The first assumption is that the relationship is linear, if a cross-product or a linear correlation 149 

coefficient is used as the Mantel statistic, or monotonic if the dissimilarities are replaced by their 150 

ranks (Mantel 1967) or if a Spearman or Kendall correlation coefficient is used to compute the 151 

Mantel statistic (Dietz 1983). The linearity or monotonicity assumption is linked to the choice of 152 

the statistic. 153 

• The second assumption, which is the basis for the alternative hypothesis (H1) of the Mantel test, 154 

is that small values of D1 correspond to small values of D2 and large values of D1 to large values 155 

of D2. Mantel stated this assumption (alternative hypothesis H1) as follows in his 1967 paper 156 

(p. 209) in the context of the disease clustering problem: “if there is time-space clustering, cases 157 

in a cluster will be close both in time and space, while unrelated cases will tend to have a larger 158 

average separation in time and space”. In their Biometry textbook, Sokal & Rohlf (1995, pp. 814 159 

and 816) formulated in similar terms the alternative hypothesis of the Mantel test for specific 160 

biological examples. 161 

 This assumption may hold for space-time clustering of epidemiological data, but does it 162 

hold for the various extensions of the Mantel test that are currently done by biologists? We will 163 

show in section “Simulations involving spatially autocorrelated data: violation of the Mantel test 164 

assumptions” that for spatial analysis involving spatially autocorrelated data, that assumption, 165 
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which refers to the homoscedasticity of the distribution of values in the distance-distance (D-D) 166 

plot, holds in a very limited number of situations; what is found in most cases is a hump-shaped 167 

or triangular distribution. This is a novel contribution to the Mantel debate. 168 

Misuse of t he Mantel test to analyse  georeferenced  data  169 

In many applications, researchers incorrectly used the Mantel and partial Mantel tests to assess 170 

hypotheses of relationships between variables or data tables, not between dissimilarity matrices. 171 

A list of examples is found in Legendre et al. (2005, pp. 438-439). Based on the demonstration 172 

reproduced in section “What is the null hypothesis of the Mantel test?” and on numerical 173 

simulations, Legendre & Fortin (2010) argued that Mantel and partial Mantel tests should only be 174 

used to test hypotheses that specifically concern dissimilarities, not those derived artificially from 175 

hypotheses about the raw data. In particular, to test the correlation between two spatially 176 

correlated vectors or matrices of raw data, one cannot use a partial Mantel test computed after 177 

transforming the raw data into dissimilarity matrices A and B and test H0: ρ(AB.C) = 0, where C 178 

is some form of geographic distance or connexion matrix. There are alternative ways of testing 179 

the significance of the correlation between two raw data vectors or matrices while controlling for 180 

spatial structure, as shown in Peres-Neto & Legendre (2010) and in Legendre & Legendre 181 

(2012).  182 

 All simulation studies carried out to measure the capacity of the partial Mantel test to 183 

control for (auto)correlation in data have been done by generating raw data that were spatially 184 

correlated, e.g. Manly (1986), Oden & Sokal (1992), Legendre et al. (2005), Legendre & Fortin 185 

(2010), Guillot & Rousset (2013) and section “Simulations involving spatially autocorrelated 186 

data: comparison of Mantel test and dbMEM analysis” of the present paper. Throughout, the 187 

Mantel test was consistently shown to have low power in these simulations, compared to analyses 188 
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performed on the original data. Appendix S1 reviews some of the papers that showed, through 189 

simulations, important characteristics of tests of significance in the presence of spatial 190 

correlation, including Mantel and partial Mantel tests. 191 

Simulation s involving spatially autocorrelated  data: violation of the Mantel test 192 

assumptions  193 

Spatially autocorrelated surfaces of different sizes and degrees of autocorrelation were generated 194 

by Gaussian random field simulations, using function RFsimulate() of package RandomFields 195 

(Schlather et al. 2014) in R, implementing a spherical variogram model through function 196 

RMspheric(). Preliminary results, generated on a small surface (20×20 pixels), will be examined 197 

first. 198 

 Then, larger surfaces were generated in the same way and a subset of points was sampled: 199 

on each surface, we selected 100 points forming a square regular grid surrounded by 5-pixel wide 200 

unsampled bands to reduce border effects in the sampled data. The points of the grid were spaced 201 

by 1 to 5 pixels; counting the border bands, the surfaces had {20, 29, 38, 47, 56} pixels in the 202 

horizontal and vertical directions, depending on the horizontal and vertical spacing {1, 2, 3, 4, 5} 203 

of the sampled points. Results for 5-pixel spacing will be examined. Similar (unreported) results 204 

were obtained for the smaller surfaces with horizontal and vertical spacing of 1 to 4 pixels. The 205 

results indicate the following about the assumptions of the Mantel test: 206 

 1. Linearity assumption of the D-D comparison. — Let us examine first the response 207 

surface simulated on the (20×20 pixels) grid with spacing = 1 pixel and autocorrelation range = 208 

10 units (Fig. 1a). The Lowess line in Fig. 1b and the response to distance classes in Fig. 1c show 209 

that the dissimilarities increased from geographic distance class 1 to 9 in this example; this is 210 
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close to the range value (10) of the controlling variogram. The mean of the response 211 

dissimilarities decreased as geographic distance increased further. Hence the D-D relationship 212 

was not linear or monotonic. Similar results are shown in Appendix S2 for larger (56×56 pixels) 213 

surfaces generated with different variogram range values. The only case where the D-D 214 

relationship was approximately linear was that with range = 70 (Fig. S1.q-r), where the 215 

autocorrelation range was near the maximum distance between pixels on the surface (i.e. between 216 

the pixels in opposite corners, whose geographic distance was 79.2 units). 217 

 2. Assumption that small values of D1 correspond to small values of D2, and large values of 218 

D1 to large values of D2. — We will examine if this assumption holds at least within the sections 219 

of the D-D plots within the range of the controlling variogram. This is the portion between 220 

geographic distances 1 and 9 or 10 in Fig. 1b-c. The graph shows that whereas small values of D1 221 

(response) correspond to small values of D2 (geographic), an increasingly broad range of 222 

response values is associated with larger geographic distances, causing heteroscedasticity in the 223 

D-D distribution. The same absence of homoscedastic D-D relationships is found for the larger 224 

surfaces simulated with various range values (Fig. S2.1). The D-D relationship on the left of the 225 

geographic distance marking the end of the range of autocorrelation of the simulated surface is 226 

hump-shaped or triangular and, in any case, very far from homoscedastic. 227 

 For spatially autocorrelated data, these two assumptions of the Mantel test are violated, and 228 

that partly explains its lack of power. The violations are less important when autocorrelation is 229 

equal to or larger than the size of the study area; that is the case where the Mantel test performs 230 

best in terms of power, as we will see in the next section. 231 
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 These two assumptions do not apply to the Mantel correlogram (Sokal 1986; Oden & Sokal 232 

1986; Borcard & Legendre 2012) where the response dissimilarities D1 are analysed in separate 233 

tests against a set of binary model matrices, each representing a geographic distance class. 234 

Simulation s involving spatially autocorrelated  data: comparison of Mantel test 235 

and dbMEM analysis  236 

Despite several papers based on numerical simulations advising to the contrary (Appendix S1), 237 

the Mantel test is still widely used by ecologists and geneticists to carry out different forms of 238 

spatial analyses. That incentive led us to compare the power of the Mantel test to that of a test 239 

based on the original (non-dissimilarity) data, using extensive simulations carried out on the 240 

largest spatially autocorrelated surfaces of the previous section.  241 

 Spatially autocorrelated data were generated using function RFsimulate(), as in section 242 

“Simulations involving spatially autocorrelated data: violation of the Mantel test assumptions”. 243 

The following statistical methods will be compared to study the relationship between the values 244 

associated to the points and their geographic positions: (1) the Mantel test between dissimilarity 245 

matrices (with one-tailed tests in the upper tail; mantel() function of the vegan package, Oksanen 246 

et al. 2013), and (2) spatial eigenfunction analysis using the form known as distance-based 247 

Moran’s eigenvector maps (dbMEM) (PCNM() function of the PCNM package, Legendre et al. 248 

2012). That method is detailed in Legendre & Legendre (2012, Chapter 14) and in the original 249 

publications (Borcard & Legendre 2002; Borcard et al. 2004; Dray et al. 2006) where it was 250 

called PCNM analysis. Spatial eigenfunctions can be used in linear models in the same way as 251 

any other set of explanatory variables. The analysis involves multiple linear regression when the 252 

response data is univariate (as in our simulation study) or redundancy analysis (RDA, Rao 1964) 253 
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when it is multivariate. In both cases, R2 and adjusted R2 statistics ( ) can be computed and 254 

tested for significance using a parametric or permutational F-test (Legendre et al. 2011). A 255 

permutational test based upon 999 random permutations of the response data will be used. No 256 

variable selection will be carried out in this study; the analyses will be based upon the whole set 257 

of eigenfunctions that model positive spatial correlation, i.e. those with positive Moran’s I 258 

coefficients. 259 

 In all simulations, 1000 random autocorrelated surfaces with 56×56 pixels were 260 

independently produced with variogram ranges of {0, 5, 10, 15, 20, 25, 30, 35, 40} grid units. 261 

These surfaces were sampled at 100 points forming a square regular grid with horizontal and 262 

vertical spacing of 5 units. 263 

Series 1 simulations involving all pairwise geographic distances 264 

The simulated data sets were analysed with respect to geography using a dbMEM regression and 265 

a Mantel test. The truncation value for dbMEM generation was the point spacing, 5 grid units. 266 

Users of the Mantel test often square-root the geographic distances to increase the linearity of the 267 

relationships with the response dissimilarities; so we carried out our study using both the original 268 

and square-rooted geographic distances. 269 

 For each range value, the 1000 simulation results were summarized by tallying how many 270 

data sets produced significant dbMEM and Mantel results at the α = 0.05 significance level (one-271 

tailed tests in the upper tail); these numbers were divided by 1000 to obtain rejection rates, which 272 

were plotted against the variogram range values (Fig. 2a). Confidence intervals, based on the 273 

binomial distribution, were also computed. They are not visible in the graph because they were 274 

smaller than the symbols representing the rejection rates. 275 

!  

Radj
2
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 Each dbMEM regression produced an R2 and an  statistic. The means of these R2 and 276 

 across 1000 simulations were computed for each variogram range value. The means were 277 

actually computed on R2 transformed to 1− 𝑅!  and 1 ! 𝑅!"#!   , which have symmetric 278 

distributions, and transformed back to ! !  and . Each Mantel test produced an rM statistic, 279 

which was transformed to  by squaring it; with this transformation, the Mantel test is 280 

considered to be a form of regression analysis, following Mantel (1967). Many users of the 281 

Mantel test use that  statistic and erroneously interpret it as if it were equivalent to an R2 282 

computed by regression on the raw data. Note that there is no way of adjusting  to account for 283 

the number of explanatory variables in matrix D2. Means of the  values were computed as for 284 

the dbMEM R2 and . The mean R2 statistics were plotted against variogram range values 285 

(Fig. 2b) together with the mean  statistics of dbMEM regression. 286 

 The results (Fig. 2a) show first that the dbMEM analysis and Mantel test had correct levels 287 

of type I error; type I error was the rejection rate when there was no spatial autocorrelation in the 288 

data (range=0) or when the range of the variogram used for generation of the data was not larger 289 

(range=5) than the interval between the sampled grid points (here 5 units). This first result has 290 

been reported other papers, e.g. Oden and Sokal (1992), Legendre & Fortin (2010) and Guillot & 291 

Rousset (2013). 292 

 When the range of the variogram controlling the autocorrelation in the data was larger than 293 

5, dbMEM analysis was always far more powerful than the Mantel test (Fig. 2a). When the range 294 

of the autocorrelation process became very large and the patches nearly covered the whole 295 

surface (Fig. S2.1k), the Mantel test became usable although its power remained lower than that 296 
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of dbMEM analysis. In all cases, the Mantel test based on square-rooted geographic distances 297 

was slightly more powerful than the Mantel test based on untransformed geographic distances. 298 

 In a regression context, R2 is a useful measure of the variation of a response variable 299 

explained by explanatory data. Fig. 2b shows that the Mantel test R2 ( ) was much smaller 300 

than that of dbMEM regression. These two statistics are not comparable: in dbMEM analysis, R2 301 

measures how much of the variance of the response data is explained by geography. In the 302 

Mantel test, it measures the fraction of the variance of the dissimilarities D1 explained by the 303 

geographic distances D2. Hence, the Mantel  cannot be interpreted as an estimate of the R2 304 

produced by an analysis of the original data. 305 

 In our simulation functions, Mantel tests produced one-tailed tests in the upper tail. This is 306 

the normal output of vegan’s mantel() function and it was adequate for our study, where we 307 

wanted (H1) to detect positive spatial autocorrelation (SA) in the simulated data when SA was 308 

present. We checked, however, what happened in the lower tail. In simulations with variogram 309 

ranges of {0, 5}, there was no SA in the data because the spacing between points on the sampled 310 

grid was 5; as expected, the rejection rates in the upper and lower tails were always near the 311 

significance level, 0.05. When there was SA in the simulated data, the rejection rate in the upper 312 

tail increased, as shown in Figs. 2-3, while it decreased and became 0 in the lower tail (not shown 313 

in the figures). It never went above the significance level.  314 

 Legendre & Fortin (2010, their Fig. 4) showed complementary results. They simulated a 315 

univariate regular gradient crossing a square map diagonally and added error (noise) to the 316 

response data. As the amount of noise increased, power of the methods of analyses decreased, as 317 

expected. The comparison involved a linear regression of the response data on the geographic 318 

!  
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2

!  

RM
2



 16 

coordinates of the sampled points (i.e. a linear trend surface analysis) and a simple Mantel test. 319 

The Mantel test became non-significant after a small amount of noise was added, whereas the F-320 

test of the linear regression remained significant for higher amounts of noise. So in that example 321 

again, linear regression had higher power than the Mantel test. 322 

Series 2 simulations involving truncated geographic distance matrices 323 

In these simulations, the matrix of geographic distances used in Mantel tests was truncated at 324 

different levels (thresholds, abbreviated thresh = {5, 10, 15, 20} grid units) and all distances 325 

larger than the truncation value were changed to the largest distance in the data set, which was 326 

the distance between the two opposite corners of the square grid (63.64 units). For each 327 

simulation condition (range and thresh), the analysis was repeated for 1000 independently 328 

generated surfaces. These simulations reproduced the method used by landscape ecologists and 329 

geneticists who apply Mantel tests to truncated distance matrices when they feel that the effect of 330 

the distance among sites can only be perceived up to a certain distance where contagion, dispersal 331 

of propagules in plants, or migration in animals, no longer creates spatial correlation among the 332 

sites (Dyer & Nason 2004; Fortuna et al. 2009; Murphy et al. 2010). 333 

 The truncated data, each with 100 observations, were analysed with respect to geography 334 

through a dbMEM regression using the full set of eigenfunctions modelling positive spatial 335 

correlation, as in series 1, and a Mantel test using the truncated geographic distance matrix 336 

(previous paragraph). 337 

 Rejection rates of the tests across the simulations are presented in Fig. 3a. For variogram 338 

ranges of 0 and 5, where there was no autocorrelation in the data, all tests had correct type I error 339 

since their rejection rates were close to the significance level. When the range was larger than 5, 340 
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dbMEM analysis was always more powerful than the Mantel test for different truncation distance 341 

values (thresh in the figure), except when the truncation value was 5. The extreme case, with no 342 

truncation of geographic distances (or thresh larger than the largest distance in the data set), 343 

corresponds to the results in Fig. 2a. Hence, when more of the distances are kept (i.e. not 344 

truncated) in the geographic matrix, the Mantel test has less power to detect SA in the response 345 

data. 346 

 That the Mantel test with thresh = 5 had power identical to dbMEM analysis may seem 347 

surprising. This is because the geographic matrix only contained two different values in that case: 348 

D = 5 for points that are at that distance, and the largest distance in the data set, D = 63.63961, 349 

for all other pairs of points. This is equivalent to the binary distance matrix used to test for 350 

autocorrelation in the first distance class of a Mantel correlogram. Our results thus show that the 351 

Mantel test used in this manner, with a single distance class, has the same power for detection of 352 

spatial autocorrelation as the dbMEM method of analysis. The simulation study of Borcard & 353 

Legendre (2012) had already shown that the test of significance in multivariate Mantel 354 

correlograms had high power. That is fine but it does not qualify the Mantel test as the equivalent 355 

of dbMEM analysis, which was developed to model the geographic distribution of univariate or 356 

multivariate data at different spatial scales, in addition to the production of a test for the presence 357 

of spatial correlation in data. In any case, when researchers use Mantel tests with truncated 358 

distance matrices, they have a specific ecological or genetic dispersion model in mind and they 359 

don’t truncate to keep only the first distance class. More about this in the Discussion. 360 

 The R2 results (Fig. 3b) tell the same story as reported in Fig. 2b: the square of the Mantel 361 

correlation ( ) is always extremely low.  362 

!  
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Series 3 simulations involving Delaunay triangulations 363 

In the interest of space, simulations involving Delaunay triangulations are described in Appendix 364 

S3. The results are essentially the same as those of the Series 2 simulations. 365 

Does the Mantel te st capture the spatial vari ation in response data?  366 

Researchers who use Mantel tests in spatial analysis often assume that the Mantel correlation of a 367 

response D matrix on a geographic D matrix captures the spatial structure that may be present in 368 

the response data and, consequently, that regressing response D on geographic D removes to a 369 

large extent the spatial structure from the response D, producing residuals without spatial 370 

correlation. Appendix S4 shows that this is not the case through a proof-by-example based upon 371 

simulated data. 372 

Discussion  373 

This paper has shown that there are more implicit assumptions behind the apparently simple 374 

decision to run a Mantel test in the context of spatial analysis than meets the eye. 375 

 We provided detailed reasons why the Mantel test is inappropriate to study spatial 376 

relationships in response data and supported them with numerical simulation results. The reasons 377 

invoked are: (1) the hypothesis of correlation tests of significance that concern raw data differs 378 

from that concerning dissimilarity matrices; (2) the statistics involved in the two types of 379 

analyses differ and cannot be reduced to one another. (3) The Mantel test assumes linearity (or 380 

monotonicity) and homoscedasticity in the D-D comparison plots; that is not the case except in 381 

extreme cases where spatial correlation is equal to or larger than the size of the study area. 382 

 Furthermore, our simulation results showed the following:  383 
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• When the range of the variogram controlling the degree of spatial autocorrelation was larger 384 

than the interval between sampled grid points, dbMEM analysis was always far more powerful 385 

than the Mantel test (Fig. 2a). 386 

• The Mantel  cannot be interpreted as an estimate of the R2 produced by an analysis of the 387 

original response data. 388 

• In simulations involving truncated distance matrices and Delaunay graph distance matrices, 389 

dbMEM analysis was always more powerful than the Mantel test for different values of the 390 

truncation distance, except when the truncation value was equal to the interval between the 391 

sampled grid points, which created a single distance class. When more of the distances were kept 392 

(i.e. not truncated) in the geographic matrix, the Mantel test had less power to detect SA in the 393 

response data. 394 

• Simulations with a truncation value of 5 were equivalent to a test of the first distance class in a 395 

Mantel correlogram; it simply indicated the presence of significant SA in the first distance class. 396 

However, when researchers use the Mantel test with truncated distance matrices, they have a 397 

specific ecological or genetic dispersion model in mind and they don’t truncate to keep only the 398 

first distance class. 399 

• Previous simulations in Legendre et al. (2005) had shown that spatial variation was, at best, 400 

weakly captured by direct regression of a response dissimilarity matrix on a geographic distance 401 

matrix. In the present paper, we went further and showed that regression on a geographic distance 402 

matrix does not control for the spatial structure from response data, and does not produce 403 

residuals without spatial correlation. 404 
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Should the Mantel test be used in spatial analysis?  405 

Our conclusions and recommendations to users for spatial analysis of ecological and genetic data 406 

are the following. 407 

 1. dbMEM analysis by regression or RDA is a more powerful and informative method of 408 

spatial analysis than Mantel tests conducted with distance matrices (truncated or not) or Delaunay 409 

triangulations. For one, the tests of significance in dbMEM analysis have much greater power to 410 

detect SA in data than Mantel tests. Secondly, dbMEM analysis is a method for modelling the 411 

spatial structure in univariate or multivariate response data at different scales; the fitted values of 412 

the regression or RDA models can be mapped, providing a visual representation of the structure 413 

at different spatial scales; the 

!  

Radj
2  of univariate or multivariate models are unbiased estimates of 414 

the portion of the information of the response data explained by the eigenfunctions (Peres-Neto et 415 

al. 2006). Groups of eigenfunctions representing the variation at different spatial scales can be 416 

used in variation partitioning together with other matrices of explanatory variables.  417 

 2. Series 2 and 3 simulations showed that when the geographic distance matrix or the 418 

Delaunay triangulation are truncated and become binary, the Mantel test becomes identical to a 419 

test of the first distance class in a Mantel correlogram and that test has the same power as the test 420 

of significance in dbMEM analysis to detect spatial autocorrelation (SA) in response data. The 421 

simulation study of Borcard & Legendre (2012) had shown that the Mantel test, used in the 422 

context of the Mantel correlogram, had good power to detect SA in data. By opposition, the 423 

present series of simulations showed that the ordinary Mantel test has little power to detect SA in 424 

data, except in the particular case where a single distance class is studied.  425 
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 In studies of empirical data, scientists do not know the range of action of SA in the 426 

response data. They can use Mantel correlogram analysis to discover it.  427 

 3. If ecologists want to use statistical tests to identify SA in field data whose spatial 428 

relationships are represented by a Delaunay triangulations or some other connection network, 429 

they should check the theoretical framework of their study and decide if they expect positive or 430 

negative SA to be present, and this for each graph distance. If negative SA is expected for some 431 

graph distance, they should use dbMEM or Mantel tests accordingly: for dbMEM, they should 432 

use only the eigenfunctions that model negative SA, whereas for Mantel analysis they should 433 

look for significance in the lower tail; these p-values are equal to or larger than 0.95 in the output 434 

of vegan’s mantel() function. 435 

 When several tests of significance are available, the final choice should be based on power. 436 

Considering that the Mantel test has low power for spatial analysis, i.e. a low capacity to detect 437 

an effect when one is present, a test with high power such as dbMEM analysis should clearly be 438 

preferred. 439 

Partial Mantel test 440 

In ecology and genetics, many papers used partial Mantel tests to control for spatial structures in 441 

the analysis of the relationships between response and environmental data, using a geographic 442 

distance matrix as covariable. Oden & Sokal (1992) were the first to demonstrate that partial 443 

Mantel tests had inflated type I error rates in analyses of dissimilarity matrices computed from 444 

independently autocorrelated data. Guillot & Rousset (2013) repeated the Oden & Sokal study in 445 

a more extensive way and came to the same conclusion (Appendix S1). This is likely due to the 446 

fact that the partial Mantel test suffers from the same problems as the simple test in the context of 447 



 22 

spatial analysis: inadequate statistic (eqn 5), lack of linearity of the relationship, and triangular 448 

distribution of the distances. 449 

 Users of partial Mantel tests should know that when the question of interest is stated in the 450 

world of raw data, the analysis should be done by partial regression or partial canonical analysis, 451 

and that these linear forms of partial analysis offer greater power than partial Mantel tests. This is 452 

especially true in spatial analysis, where simulation studies have shown that the partial Mantel 453 

test is less powerful than partial canonical analysis (Legendre et al. 2005) and can lead to 454 

erroneous conclusions (Oden & Sokal 1992). 455 

Should the Mantel test be used at all? 456 

Mantel tests are valid and useful when applied to the study of relationships among dissimilarities 457 

in dissimilarity matrices. Such questions are rarely encountered in ecology and genetics, but they 458 

exist; one example is found in Le Boulengé et al. (1996). Mantel tests should simply not be used 459 

to test hypotheses that concern the raw data from which dissimilarity matrices can be computed 460 

or to control for spatial structures in tests of relationships between two autocorrelated data sets 461 

 In population genetics, researchers often use the Mantel method to test hypotheses of 462 

isolation by distance (IBD). What is the most appropriate and powerful method to test this 463 

hypothesis should be the subject of a separate study. It seems clear, however, that a Mantel 464 

correlogram or a multivariate variogram would provide more complete and interesting results 465 

than a Mantel test because these analyses would indicate what is the range of the autocorrelation 466 

in the data. On the other hand, a dbMEM analysis could be conducted to detect and model the 467 

spatial correlation in the genetic data. This is done by computing principal coordinates from the 468 

genetic distance matrix and using them as response data in a dbMEM analysis by RDA. After 469 
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running these analyses, researchers could decide what sets of results are the most useful to 470 

answer their landscape genetic question. 471 
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Fig. 1. (a) Map of a 20×20 pixel simulated autocorrelated surface. The variogram range 571 

controlling the autocorrelation structure was 10. Colour scale: from dark red (low) to pale yellow 572 

(high values). (b) Relationship between geographic distances among pixels (abscissa) and 573 

dissimilarities (unsigned differences) computed from the simulated data whose values are 574 

represented by colours in panel a. This graph contains (202(202 – 1)/2) = 79800 points (pairs of 575 

dissimilarities). Because of point superposition, the D-D relationship central tendency is not 576 

clear; a Lowess smoother (red line) was added to indicate the central tendency of the relationship 577 

across the plot. (c) The geographic distances in the abscissa of panel b are replaced by distance 578 

classes; the central tendencies of individual values of the response dissimilarities within classes 579 

are represented by their means (blue circles) and medians (black squares); variation is represented 580 

by empirical 95% coverage intervals, i.e. intervals containing 95% of the response dissimilarities 581 

in the class.  582 
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 583 

Fig. 2. (a) Rejection rates (i.e. number of rejections of H0 at the 0.05 significance level divided by 584 

the number of simulations, 1000) of the regression–dbMEM and Mantel tests as a function of the 585 

variogram range in the simulated data. (b) Mean R-squares of the two methods of analysis. The 586 
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mean adjusted R-square ( ) of the regression–MEM test, which is an unbiased estimate of the 587 

explained variation, is also shown. No  statistic is available for Mantel tests.  588 
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 589 

Fig. 3. (a) Rejection rates (i.e. number of rejections of H0 at the 0.05 significance level divided by 590 

the number of simulations, 1000) of the regression–dbMEM and Mantel tests as a function of the 591 

variogram range in the simulated data. Mantel tests were computed with truncation levels (thresh 592 

in figure) of 5, 10, 15 and 20 grid units. (b) Mean R-squares of the two methods of analysis. The 593 
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mean adjusted R-square ( ) of the regression–MEM test, which is an unbiased estimate of the 594 

explained variation, is also shown. No  statistic is available for Mantel tests. 595 
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