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Abstract 13 

Aim This paper presents the foundations and statistical bases for Temporal Beta diversity 14 
analysis, a method for comparison of repeated multi-species surveys at the same sites. Surveys of 15 
that type are presently done by ecologists around the world. In particular, the paper describes a 16 
method (TBI) to test the differences between community data matrices corresponding to 17 
observations made at times T1 and T2 in space-time ecological surveys involving several sites. 18 
The objective is to identify the sites that have changed in an exceptional way in species 19 
composition between T1 and T2.  20 

Innovation The null hypothesis of the TBI test of significance is that a species assemblage is not 21 
exceptionally different between T1 and T2. The problem: testing the significance of dissimilarity 22 
coefficients is usually not possible because the values in a dissimilarity matrix are interrelated. 23 
However, the dissimilarity between T1 and T2 for a site is independent of the dissimilarities that 24 
concern T1–T2 data at other sites. The paper shows that it is possible to compute a valid test of 25 
significance in that case. The method also allows users to examine the processes of biodiversity 26 
losses and gains through time at the different sites in space-time surveys. 27 

Main conclusion Three applications of the method to different ecological communities are 28 
presented. This method is applicable worldwide to all types of ecological communities, marine 29 
and terrestrial. It will be of value to identify exceptional sites in space-time ecological surveys 30 
carried out to study anthropogenic impacts, including climate change. R software is available 31 
implementing the method. 32 

Keywords Beta diversity, B-C plots, space-time analysis, statistical power, temporal beta 33 
diversity, temporal beta diversity index (TBI), type I error. 34 

 35 

Introduction  36 

In several application fields, researchers want to compare observations made at several sites and 37 
at two different times. The question of interest is: are there sites where the difference is so 38 
important that they do not seem to belong to the same statistical population as the other sites? If 39 
the difference is so exceptional as to lead to a statistically significant result, these sites are worth 40 
examining in more detail to identify the cause of the differences. The exceptional character of the 41 
difference indicates that some atypical process may be occurring there. Here are some examples. 42 
In palaeoecology, comparison of ancient and modern diatom communities preserved in lake 43 
sediment cores may indicate areas where acute anthropogenic processes have singularly changed 44 
the surrounding land use (e.g., Winegardner et al. 2017). When a strong environmental impact 45 
has taken place at a known point in time and an ecological community had been surveyed ahead 46 
of the impact, ecologists may survey that community again to determine how it was affected by 47 
the impact, and then how it may have recovered in later surveys (e.g., Legendre & Salvat 2015). 48 
In community ecology, when studying a permanent stem-mapped forest plot divided into regular 49 
quadrats, examining surveys made at two different times may indicate quadrats that have been 50 
exceptionally affected by a disturbance, e.g. a climatic or anthropogenic event (e.g., Legendre & 51 
Condit in prep.). In population genetics, comparing several local populations of a species 52 
observed at two different moments separated by an event of interest may indicate the locations 53 
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where the event may have had exceptionally strong effects by changing the population genetic 54 
structure. Other examples can be found in other fields of biological and biomedical research. 55 

 This paper describes a method to test, for several sampling units (objects), the differences 56 
between data vectors corresponding to observations made at times T1 and T2. To fix ideas, I will 57 
refer to these objects as sites in this paper, although they may be of different natures. The 58 
observed data, assembled in matrices Mat.1 for time T1 and Mat.2 for T2, may be of different 59 
kinds; in landscape ecology and genetics, the data are community composition or population gene 60 
frequencies observed at different sites. The hypothesis (H0) to be tested is that a site is not 61 
exceptionally different between T1 and T2, compared to other sites in the study that have been 62 
observed at the same two times, and belongs to the same statistical population as the other sites.  63 

 Tests of significance for dissimilarity coefficients (D) are usually not possible because the 64 
D values in a dissimilarity matrix are obtained from the computation of an index between all 65 
pairs of objects, e.g. sites in ecology (their number is n), and are thus interrelated, each site 66 
contributing to (n – 1) of the dissimilarities in the half-matrix of dissimilarities. In T1–T2 67 
comparisons for individual sites, however, the dissimilarity between T1 and T2 for a site is 68 
independent of the dissimilarities computed for T1–T2 data at other sites. So it may be possible 69 
to work out a valid test of significance in that case. That test would be of value to identify 70 
exceptional sites, which may have a large dissimilarity for different reasons; these reasons may 71 
be worth investigating. If the number of sites is large, investigators may want to focus only onto 72 
the sites that produce exceptionally (in the statistical sense) large dissimilarity values in T1–T2 73 
comparisons. A dissimilarity D computed between times T1 and T2 for a site, using community 74 
composition or gene frequency data for example, is called a Temporal Beta-diversity Index (TBI); 75 
it measures the change in community composition (or temporal beta diversity) from T1 to T2. A 76 
change through time is directional; something (e.g. species, species abundances, gene 77 
frequencies) has been gained and/or lost between T1 and T2, and these two components are both 78 
of interest to understand the change. 79 

Methods 80 

TBI computation and testing 81 

The proposed method consists basically in the following steps: a dissimilarity index is computed 82 
for each site between the data vectors corresponding to T1 and T2, then the indices are tested for 83 
significance using a permutational procedure. Two of the dissimilarity indices that can be used in 84 
this type of analysis also allow the computation of species losses and gains at each site between 85 
T1 and T2. These data provide users with detailed information, at the site level, about the 86 
response of the community to the events that occurred between T1 and T2. 87 

1. Compute Temporal Beta-diversity Indices (TBI) 88 

Consider two data matrices, Mat.1 and Mat.2, about the same objects, each one with n sites as 89 
rows and the same p variables as columns (Fig. 1). Individual values may be noted yij.1 and yij.2. 90 
Compute the dissimilarity D(yi.1, yi.2) between the two vectors of values, yi.1 and yi.2, for each 91 
site i. These n dissimilarities form a vector of length n. 92 

 The percentage difference dissimilarity (D%diff; method "%difference" in the R function 93 
TBI.R, also known as the Bray-Curtis index in other computer packages), and the Ružička 94 
dissimilarity (DRuz; method "ruzicka" in the R function) can be used for beta diversity assessment. 95 
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They are obtained by computing a dissimilarity function (equations shown below). With 96 
presence-absence data, the percentage difference produces (1 – SSørensen) dissimilarity whereas the 97 
Ružička dissimilarity produces (1 – SJaccard), where S designates similarity. 98 

 The chord, Hellinger, and log-chord distances are members of the Box-Cox family of 99 
distances (Legendre & Borcard 2018). They are also classical indices for beta diversity studies 100 
(Legendre & De Cáceres 2013). These indices, as well as the Euclidean distance, are also 101 
implemented in the TBI.R function and will be used in the simulations and ecological 102 
applications below. 103 

 When the percentage difference or the Ružička dissimilarity are used as TBI indices, one 104 
can compute two derived indices to study the directionality of the change through time at each 105 
site, as proposed by Legendre and Salvat (2015). Consider data vectors y1 and y2 corresponding 106 
to the multi-species observations at T1 and T2 for a site. The following calculations can be done:  107 

• aj is the part of the abundance of species j that is common to the two survey vectors: aj = 108 
min(y1j, y2j). A is the sum of the aj values for all species. It represents the unscaled similarity 109 
between two surveys. 110 

• bj is the part of the abundance of species j that is higher in survey 1 than in survey 2: bj = y1j –111 
 y2j. B is the sum of the bj values for all species. It is the unscaled sum of species losses between 112 
T1 and T2. 113 

• cj is the part of the abundance of species j that is higher in survey 2 than in survey 1: cj = y2j –114 
 y1j. C is the sum of the cj values for all species. It is the unscaled sum of species gains between 115 
T1 and T2. 116 

 (B+C) represent the unscaled dissimilarity. The values A, B and C are the building elements 117 
of the percentage difference, D%diff = (B+C)/(2A+B+C), and the Ružička dissimilarity, DRuz = 118 
(B+C)/(A+B+C) (Legendre 2014). (B – C) indicates the directionality of the process of losses and 119 
gains of individuals of the different species between the two surveys. B and C can be scaled by 120 
division by a denominator den, which is (2A+B+C) for D%diff and (A+B+C) for DRuz case. The 121 
D%diff and DRuz dissimilarities measure the temporal beta diversity for a site. The scaled B and C 122 
statistics can be called Dloss and Dgain, where Dloss = B/den and Dgain = C/den. An interesting 123 
relationship is that Dloss + Dgain = D%diff  or DRuz, depending on the denominator den that is used. 124 
In other words,  Dloss and Dgain partition the D%diff and DRuz dissimilarities into loss and gain 125 
components. Values of these indices are in the [0,1] range and are thus directly comparable. The 126 
loss and gain statistics can be computed for occurrence (i.e. presence-absence) data as well, 127 
because D%diff becomes the Sørensen dissimilarity with occurrence data and DRuz becomes the 128 
Jaccard dissimilarity, as mentioned above. 129 

 What are the ecological applications of Dloss and Dgain? For each site, one can explore which 130 
process, between Dloss and Dgain, presents the largest contribution to the temporal D%diff 131 
dissimilarity; in other words, which process is dominant at each site. The means of the Dloss and 132 
Dgain components across the sites express the dynamics of the community over all sites. For 133 
observations across a large number of sites within a region, or in all quadrats of a stem-mapped 134 
dynamics forest plot, the B/den and C/den statistics can be mapped, subjected to canonical 135 
analysis (see Ecological application 2), plotted as B-C plots (see subsection 4 below and 136 
Ecological application 3), or studied in other ways to understand the differences among the study 137 
sites. 138 
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2. Testing procedure 139 

To test the significance of TBI indices, the data are permuted at random in both matrices and the 140 
indices are recomputed; this procedure is repeated a large number of times and a p-value is 141 
computed for the difference between T1 and T2 at each site. Permutations can be done in several 142 
ways. A simulation study will compare three permutation methods.  143 

 Permutation of species independently of one another is the method used to assess the 144 
significance of Local Contributions to Beta Diversity (LCBD indices) in the Legendre & De 145 
Cáceres (2013) paper. The same logic is followed here in permutation methods 1 and 2. 146 
Simulation results (below) will show that this method produces tests with higher power than 147 
method 3, the permutation of entire data rows. 148 

2.1. Permutation method 1 –  149 

Permute the raw abundance data at random within each column separately, but in the same way 150 
in the two matrices corresponding to T1 and T2. 151 

2.1.1. In each matrix, the original values (e.g. species abundances) are permuted at random, 152 
independently in each column. Permutation of the two matrices is started with the same random 153 
seed, so that the values in each column (e.g. species) are permuted in the same way in 154 
Mat1.perm and Mat2.perm. With this method, it is the differences in values between T1 and T2, 155 
for each species, that are permuted at random among the sites. The justification is that we are 156 
testing dissimilarities, obtained by combining the species differences between T1 and T2.  157 

2.1.2. The transformation, if any (in the case of chord, Hellinger or log-chord dissimilarities), is 158 
recomputed on the permuted data matrices. This is necessary to make sure that the permuted data 159 
are transformed in the same way as the initial data, with row sums or row norms of 1. In this way, 160 
the Di of the permuted data will remain comparable to the reference Di. 161 

2.1.3. The TBI distances between T1 and T2 are recomputed, for each site separately. 162 

2.1.4. After a large number of permutations, a p-value is computed for site i (hence for each 163 
D(yi.1, yi.2) index), in the same way as in any permutation test. A correction for multiple testing is 164 
applied to obtain a correct experimentwise error rate. 165 

Some technical aspects of permutation method 1 are discussed in Appendix S2. 166 

2.2. Permutation method 2 – 167 

A variant over method 1 is to permute each species independently, as in method 1, without 168 
worrying about using the same permutation for species j in matrices Mat.1 and Mat.2. If that 169 
method has the same power as method 1, or better, it would lead to simpler code.  170 

2.3. Permutation method 3 – 171 

Another possible method is to permute entire rows of Mat.1 and Mat.2, independently in these 172 
two matrices, as it is done in several permutational statistical procedures. The statistical 173 
hypothesis under test and the permutation set differ from those in methods 1 and 2 where each 174 
species is permuted independently. It will be included in the simulation study only because this 175 
method is widely used in multivariate data analysis. 176 
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2.4. Permutation method 4 –  177 

• If the sites are part of a geographic broad-scale gradient on a map and spatial autocorrelation is 178 
considered to be a salient property of the data, each species could be permuted in a toroidal 179 
manner to preserve the spatial autocorrelation of the data. This option is not implemented at the 180 
moment in the TBI.R calculation function. 181 

3. BCD computation  182 

When the percentage difference or the Ružička dissimilarity are used as TBI indices, B is the 183 
unscaled sum of species losses and C is the unscaled sum of the species gains between T1 and 184 
T2. The unscaled statistics can be scaled to values in the [0,1] range by division by the percentage 185 
difference denominator den = (2A+B+C) or by the Ružička denominator den = (A+B+C). The 186 
dissimilarity D is (B/den + C/den) = (B+C)/den. If the TBI dissimilarity is either the percentage 187 
difference or the Ružička dissimilarity, one can take advantage of that decomposition of D by 188 
listing the B/den and C/den components of TBI indices for each site in the study. These basic 189 
statistics can be used in two different ways: 190 

 3.1. We can compute summary statistics: the mean of (B/den), the mean of (C/den) and the 191 
mean of D = (B+C)/den. The following relationship holds: mean(B/den) + mean(C/den) = 192 
mean(D). From this decomposition of D, we can derive the contribution of the species losses to 193 
the total dissimilarity, B/(B+C), and similarly the contribution of the species gains to the total 194 
dissimilarity, C/(B+C). These two ratios sum to 1, providing the relative importance of the 195 
species losses and gains phenomena. The result is the same for calculation without a denominator 196 
den, or with either the percentage difference or the Ružička denominator.  197 

 3.2. For each site, we can also obtain the sign of the difference (gains – losses), or (C – B): 198 
if B > C, we note a minus sign (–), and if B < C we note a plus (+) sign. This notation allows 199 
users to quickly identify the sites where losses or gains dominate. Similarly, the difference 200 
mean(C/den) – mean(B/den) is computed; its sign tells us if gains (+ sign) or losses (– sign) 201 
dominate across all sites. The significance of the difference between the two vectors of statistics 202 
B/den and C/den can be computed using a parametric or permutational paired t-test; the R 203 
function mentioned in subsection 5 below computes both forms. These tests provide overall 204 
indications of the direction of change in community composition over all sites. They help 205 
confirm the asymmetry between abundance or occurrence losses (B/den) and abundance or 206 
occurrence gains (C/den). In Ecological application 2 (Tikus Island coral communities), the two 207 
forms of calculation provided complementary information. 208 

4. B-C plot  209 

We can also use the B/den and C/den statistics as coordinates of points (representing sites) in 210 
bivariate graphs with B/den in the ordinate and C/den in the abscissa. We call these graphs B-C 211 
plots. They display visually the relative importance of the loss and gain processes across the 212 
study sites, informing researchers about the detailed and global structure of the species losses and 213 
gains.  214 

 A B-C plot is presented in Ecological application 3 (Chesapeake Bay benthos data). In that 215 
B-C plot, a diagonal green line, with slope of 1, was drawn through the origin; it represents the 216 
theoretical positions of sites where Dgain would be equal to Dloss. A red line was also drawn 217 
parallel to the green line, passing through the centroid of all points. When the red line is below 218 
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the green line, it indicates that the survey interval was dominated by species losses across the 219 
sites, and the opposite if the red line is above the green line. Points found higher in the plot 220 
towards the upper-right corner represent higher temporal beta diversity than points found lower in 221 
the direction of the lower-left corner.  222 

 Sites found at the highest diagonal margin of the distribution of points, in the direction of 223 
the upper-right corner of the plot, have high D values (beta differentiation). In most cases, this 224 
happens because communities have undergone great changes from T1 to T2. High D values may 225 
also be found at sites that contain very few species and individuals. This situation is discussed in 226 
Ecological application 3, where four such sites are found. Users should check the number of 227 
species and individuals involved in the dissimilarity calculation of these sites before drawing 228 
ecological conclusions. 229 

 In B-C plots, the points representing sites can be labelled with colours or symbols 230 
representing the types of environment, the geographic areas where they come from, or any other 231 
independent classifier of interest. Separate B-C plots can be drawn for sites surveyed in different 232 
types of environment, although all sites have been analysed in the same TBI analysis. 233 
Comparison of these plots will immediately show which types of environment have produced 234 
mostly losses or gains in species occurrences or abundances. Ecological application 3 shows a B-235 
C plot with the sites separated in two classes of a temperature classifier. 236 

5. Software 237 

These calculations are implemented in the TBI() function in R, presently available on the Web 238 
page http://adn.biol.umontreal.ca/~numericalecology/FonctionsR/. Examples of output files of 239 
the TBI function are shown in Appendices S3 and S4.  240 

Numerical simulations 241 

Numerical simulations were used to check the type I error rate and power of the permutation 242 
methods described in subsection 2 above. The data simulation methods and results are described 243 
in detail in Appendix S1. A summary of these results is presented here, with recommendations to 244 
users of the method. 245 

Simulation to estimate type I error rates 246 

The simulation results reported in Appendix S1 show that the TBI tests had correct rates of type I 247 
error with the three permutational testing methods, for the two community-like data generation 248 
methods (Poisson and lognormal) and all dissimilarity indices used, and this for all significance 249 
levels (α) considered, from α = 0.01 to α = 0.50. 250 

Simulations to compare power of D indices and permutation methods  251 

For the analysis of community composition data, permutation methods 1 and 2 are equally 252 
appropriate (Figs. S1.5 and S1.6, Appendix S1). The percentage difference and Ružička indices 253 
produced tests with the highest power, followed by the indices in the Box-Cox family: the chord, 254 
Hellinger and log-chord distances. The Euclidean distance alone produced TBI tests with 255 
extremely low power. It should not be used for TBI tests of community composition data. 256 
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 The best combination to obtain TBI tests of community data with maximum power is to use 257 
the percentage difference or the Ružička indices with permutation methods 1 or 2. These two 258 
dissimilarities can also be decomposed into species losses (B/den) and gains (C/den), which can 259 
be used to examine the processes of losses and gains at the site level and to produce B-C plots. 260 

 For standardized environmental variables, only the Euclidean distance was tested in the 261 
simulation study because this is the only one that makes sense with this type of data. The 262 
simulation results clearly showed that permutation method 1 produced the highest power with 263 
simulated quantitative environmental data. It would be the testing method of choice for this type 264 
of data. 265 

 Additional simulations involving different numbers of sites with an effect and different 266 
total numbers of sites showed that power of the test with permutation method 1 was high as long 267 
as the proportion of sites with an effect was smaller than n/2, independently of the total number 268 
of sites n in the study (Fig. S1.7, Appendix S1).  269 

 Warning – In real ecological studies, when the TBI test is applied to data where some sites 270 
are highly impoverished due to pollution or other extreme environmental situations, whereas 271 
other sites have higher species richness, this may result in sites with very few species and no 272 
species in common in the T1–T2 comparisons due to sampling variation at these impoverished 273 
sites. The TBI test will indicate a significant difference between T1 and T2 for these sites and this 274 
is a legitimate statistical outcome. When users of the method identify sites showing significant 275 
TBI tests in real data, they should check the species composition of these sites at T1 and T2. 276 
Interpretation of the test results should be done with caution when high and significant TBI 277 
indices are associated with community composition vectors with low richness and no species in 278 
common between T1 and T2. Examples are found in Ecological application 3, Chesapeake Bay 279 
data. 280 

Application to physical environmental or community trait data  281 

It could be interesting to determine in what sites the changes in environmental data (e.g. land use) 282 
were the most important. One could then determine if these sites are also those for which the 283 
community has changed the most. Functional trait matrices could also be analysed in that way 284 
(Laliberté & Legendre 2010) in order to determine at which sites the trait composition of the 285 
community has been altered the most. 286 

 Use the TBI method to compare two matrices containing the same environmental variables 287 
observed at T1 and T2. This is a situation where the Euclidean distance would be appropriate as a 288 
basis for computing a TBI index. Data preparation: 289 

• If all environmental variables are quantitative, they should be standardized before they are used 290 
in TBI analyses to make sure that all variables have the same weight (i.e. the same variance) in 291 
the calculation of TBI indices. The correct way of standardizing the variables is to put them in a 292 
single data table, Y = rbind(Y.T1, Y.T2); standardize Y by columns [Y.stand = scale(Y)]; then 293 
separate the two tables before TBI analysis. In that way, the differences in values of each variable 294 
for all pairs of sites in the two tables will remain comparable to the original differences in 295 
unstandardized values and the distances computed between sites in T1 and T2 will be 296 
meaningful. Appendix S6 contains an R function to carry out this special standardization.  297 
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• If the environmental data contain a mixture of quantitative and qualitative data, one could put 298 
the two data tables together as above, then compute the Gower dissimilarity using the gowdis(Y) 299 
function of package FD, which can handle mixtures of quantitative and qualitative variables, and 300 
finally apply principal coordinate analysis (PCoA) to the square-rooted Gower dissimilarities. 301 
Square-rooting should make a Gower D matrix Euclidean before PCoA; see Legendre & 302 
Legendre (2012, Table 7.2). These operations will produce a table of principal coordinates, which 303 
can be split in two matrices and used as input into TBI analysis. No standardization of these data 304 
matrices will be required. 305 

• For community trait matrices, use the same method: Gower dissimilarity, PCoA of the square-306 
rooted dissimilarities, split the principal coordinates in two matrices, compute TBI using the 307 
Euclidean distance. 308 

 No application of TBI analysis to environmental or trait data is presented in this paper to 309 
save space. 310 

 311 

Ecological applications 312 

Ecological application 1 – Insecticide treatments in mesocosms  313 

The invertebrate insecticide treatment data, from van den Brink & ter Braak (1999), are described 314 
in Appendix S3. We will compare data of surveys #4 and #11. Survey #4 was done one week 315 
after the insecticide treatment; then, the fauna of the mesocosms was considered by the authors to 316 
have fully recovered from treatment at the time of survey #11. For example, in the two 317 
mesocosms that had received the highest insecticide doses, species richness increased by 9 and 19 318 
species from survey #4 to #11. 319 

 All TBI dissimilarities showed that in the mesocosms with the highest insecticide doses, 320 
community compositions was the most different between T1 and T2 (Table 1, upper panel). The 321 
p-values were identical for the percentage difference and Ružička dissimilarities (Table 1, lower 322 
panel); the two mesocosms that had received the highest doses of the insecticide, M11 and M12, 323 
showed significant differences in community composition between surveys #4 and 11. The chord, 324 
Hellinger and log-chord distances led to the same conclusion. These five distances are deemed 325 
appropriate for beta diversity study (Legendre & De Cáceres, 2013). On the contrary, the 326 
Euclidean distance is known to be inappropriate for such studies and, indeed, tests based on that 327 
distance did not show significant differences in community composition between surveys #4 and 328 
#11 in any of the mesocosms. 329 

 Detailed analysis of the species losses (B/den) and gains (C/den), obtained from TBI 330 
analysis computed with the percentage difference (Appendix S3), showed that in the 8 treated 331 
mesocosms, the changes in community composition always consisted of species gains; that is, 332 
statistic C/den (gains) was always larger than B/den (losses). Analysis of the mean values of 333 
B/den and C/den for these 8 mesocosms showed that C/den represented 58% of the 334 
dissimilarities, as expected in a study of recovery after an insecticide treatment. The 335 
permutational paired t-test showed a significant difference (p = 0.0074) between T1 and T2 336 
across the 8 mesocosms (additional calculations, not shown in Appendix S3). 337 
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 TBI calculations using the Sørensen dissimilarity (Appendix S3) indicated that, in addition 338 
to mesocosms #11 and 12, mesocosm #10 (treated with 6 µg/L of insecticide) also displayed a 339 
significant difference between T1 and T2 in species occurrence data. 340 

 Further analyses were run with the three permutation methods proposed in this paper, using 341 
the percentage difference dissimilarity and 999 random permutations for the tests of significance. 342 
Only the results for mesocosms M10 to M12 are reported because all other p-values were 1.0 343 
after correction for multiple testing.  344 

• Permutation method 1 – The last three corrected p-values were 0.230, 0.012 and 0.012; M11 345 
and M12 were significant at alpha=0.05. 346 

• Permutation method 2 – The last three corrected p-values were 0.470, 0.012 and 0.044; M11 347 
and M12 were significant at alpha=0.05. 348 

• Permutation method 3 – The last three corrected p-values were 1.000, 0.120 and 0.759; M10, 349 
M11 and M12 were not significant at alpha=0.05. 350 

Permutation method 1 had the highest power to detect changes in species composition whereas 351 
method 3 lacked power; it did not detect the changes between T1 and T2 at any site. These 352 
observations are in agreement with the simulation results reported in a previous section and in 353 
Appendix S1 of this paper, which showed that method 3 had very low power with community 354 
composition data. 355 

Ecological application 2 – South Tikus Island coral communities 356 

Data on the abundances of 75 coral species at 10 sites in the island of South Tikus, Indonesia, are 357 
described in Appendix S4. We will examine the changes in community composition between the 358 
1981 survey and all five following surveys: 1983, 1984, 1985, 1987 and 1988. This study is not 359 
meant to identify sites that were exceptionally different between two years or test specific 360 
hypotheses about them because specific environmental conditions at each site have not been 361 
reported for each year. Instead of testing the TBI statistics for individual sites, we will carry out a 362 
detailed study of the species loss (B/den) and gain (C/den) statistics, as described in the Methods. 363 
These statistics were computed with the denominator (den) of the percentage difference index; 364 
they decompose the percentage difference into additive components. 365 

 First, we will plot the mean values of B/den, C/den and D statistics across the sites, in 366 
comparisons of the 1981 survey with all successive surveys in turn (1983, 1984, 1985, 1987 and 367 
1988) (Fig. 2). This method of analysis was used by Legendre and Salvat (2015, Fig. 3), who 368 
described the effects of a nuclear test on the mollusc communities of an atoll in the Pacific. Here, 369 
we are studying the effect of an El Niño event on coral communities.  370 

 Fig. 2a shows the changes in D between years, and its components B/den and C/den. We 371 
observe that after El Niño, species losses (B/den) dominated the changes, accounting for 96% of 372 
the dissimilarities (D) between 1981 and 1983; species gains (C/den) represented only 4% of D. 373 
In later years, the species losses decreased. The asymmetry between B/den and C/den, with 374 
dominance of B/den (losses) over C/den (gains), was significant for all year pairs in Figs. 2a and 375 
2b, as shown by the overall paired t-tests of the asymmetry, described in the Methods, computed 376 
for each year pair over the 10 study sites, which were all significant. 377 
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 Does that mean that some of the species that had disappeared had recovered, or that only 378 
the species that remained had increased their abundances-per-species? The answer is found in 379 
Fig. 2b, which displays the same statistics, computed for species occurrence data. That second 380 
graph shows that many species disappeared at first from the surveyed sites after El Niño (B/den 381 
was 77% for the 1981-1983 comparison), then some of the original species recovered on the 382 
surveyed reefs (B/den decreased to 62% for 1981-1984 and to 45% for 1981-1985). Some of the 383 
coral species reestablished themselves at the surveyed sites during the following years, possibly 384 
by budding from colonies that had survived at nearby sites, or by dispersion of larvae from 385 
elsewhere. During that time, new species that were not present in 1981 occupied the depleted 386 
reefs, starting in the 1981-1983 comparison (C/den = 6%) and increasing in the following years 387 
(17% for 1981-1984 and 19% for 1981-1985). Observed changes in abundance-per-species and in 388 
occurrence became small, possibly caused by sampling variation.  389 

 The overall similarity in community composition between the years can be appreciated in a 390 
RDA biplot, where the centroid of each year is shown surrounded by the 10 site observations of 391 
that year (Fig. 3). This biplot was produced as follows: first, a percentage difference matrix was 392 
computed among all years and sites, square-rooted to make the dissimilarity matrix Euclidean, 393 
and subjected to principal coordinate analysis (Gower 1966). The entire matrix of principal 394 
coordinates was used as the response data in a RDA against a factor representing the 6 survey 395 
years of the study. This form of canonical ordination is called distance-based redundancy analysis 396 
(dbRDA, Legendre and Anderson 1999). The figure shows that the sites in 1981 had quite 397 
different species composition than in surveys after El Niño. The communities moved to a 398 
position in the ordination quite distant from 1981 after heavy species losses, then it moved to a 399 
new position in 1984 after it recuperated some of its former species, plus some new species that 400 
were not present in 1981 and 1983. It moved again to a new position in 1985. From then on, the 401 
changes observed in 1987 and 1988 seem to represent random variation due to observed random 402 
losses and gains of species, which may be due in part to sampling variation and in part to random 403 
species losses and gains. 404 

 As in the Legendre and Salvat (2015) study, where the effect on communities was due to a 405 
man-made disturbance, the communities found in South Tikus after the natural El Niño event 406 
differed in species composition from the structure they had in 1981 and they kept changing, 407 
apparently randomly, in later years. These observations are compatible with the neutral theory of 408 
evolution of communities. 409 

Ecological application 3 – Chesapeake Bay data 410 

The data of the Chesapeake Bay Benthic Monitoring Program are described in Appendix 5. They 411 
concern 205 benthic species caught at 27 sites in the Chesapeake Bay, sampled spring and fall 412 
during 13 years from 1996 to 2008. For the present example, we will concentrate on the faunal 413 
data of the 25 brackish sites observed during the fall surveys conducted in 2005 and 2008. 52 414 
species were observed in these two years: 38 in 2005 and 45 in 2008, with an overlap of 31 415 
species found in both years.  416 

 This example offers the opportunity to build a B-C plot described in section 4 of the 417 
Methods section. The percentage difference index was used; the Ružička index would have 418 
produced similar results. These data will be used to demonstrate how to draw B-C plots and how 419 
to interpret them. 420 
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 For the pair of years 2005 and 2008, the B-C plot is shown in Fig. 4. In the plot, the red line 421 
is above the green line. This indicates that gains in benthic abundances-per-species dominated 422 
losses in the Chesapeake (fall surveys) from 2005 to 2008. 423 

 A simple classification of the sites by an environmental factor, water temperature, was used 424 
to separate the sites in two groups, providing an example of the kind of information that can be 425 
derived from displaying different habitat groups as symbols or colours in B-C plots. In the 426 
present example, the dispersion of the sites shows a strong relationship between water 427 
temperature and the gains and losses of species. The analysis and B-C plots could have been 428 
repeated on species occurrence (presence-absence) data. 429 

 In addition to the computation of the B/den and C/den components at each site, the R 430 
function also computed TBI tests of significance of the difference between years at each site. 431 
Although this is not the prime purpose of this example, let us mention that four sites were 432 
significant at the 0.05 level after Holm correction for multiple testing (25 simultaneous tests). 433 
They are sites S22, S23, S52 and S71. These 4 sites, shown in Fig. 4, all had a TBI dissimilarity 434 
D = 1, no species in common between T1 and T2, and very few species present: 7 species at T1 435 
and 1 species at T2 for site S22, 3 and 3 for S23, 0 and 3 for S52, 4 and 7 for S71. Due to the 436 
small numbers of species and individuals at these sites, the test results should not be taken to 437 
represent strong evidence of an important change in community composition. These D = 1 results 438 
could be due to sampling variation. 439 

 A map of the 25 brackish sites on the Chesapeake Bay, plotted with the RgoogleMaps 440 
package, is shown in Fig. S5.1 (Appendix S5) of the present paper. In the map, signs on the 441 
symbols indicate the sites dominated by abundance-per-species gains and losses between 2005 442 
and 2008. The site identification numbers are those found in the data base. 443 

Discussion 444 

TBI analysis and B-C plots are useful to identify exceptional sites in space-time ecological 445 
surveys carried out to study the effects of natural and anthropogenic impacts, including the 446 
effects of climate change on natural communities and other types of biodiversity data. 447 

 The method was elaborated while different applications involving parts of the method were 448 
being developed. Some of these applications have already been published in papers that offered 449 
opportunities to develop the TBI theory and software, providing pertinent application questions 450 
and data. 451 

• Impact of a field experiment – The loss (B/den) and gain (C/den) statistics were first analysed 452 
by Legendre & Salvat (2015) to compare community composition data (marine molluscs) during 453 
30 years, before and after a man-made disturbance on an atoll in the Pacific. This disturbance to 454 
the mollusc community was the atmospheric test of a Hydrogen bomb in 1968. 455 

• A palaeoecological study – Winegardner et al. (2017) compared diatom communities in lake 456 
sediment surveyed 150 years apart across the USA. Temporal beta diversity varied significantly 457 
as a function of forest cover, with higher temporal beta in watersheds with contemporary lower 458 
forest cover. 459 

• Space-time freshwater ecology – Kuczynski et al. (2018) compared freshwater fish surveys 20 460 
years apart in rivers throughout France. They observed biotic homogenization over time in fish 461 
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communities. Changes in community composition mainly resulted from population declines and 462 
were favoured by an increase in temperature seasonality and in non-native species density. 463 

• Forest ecology – Legendre & Condit (to be submitted) computed and analysed B-C plots for six 464 
habitat types, comparing tree community composition (abundance data) from the surveys 465 
conducted 30 years apart, in 1985 and in 2015, in the Barro Colorado Island Forest Dynamics 466 
Plot in Panama, divided into 1250 (20 m × 20 m) quadrats.  467 

 Other methods can be used to further our understanding of the difference between surveys 468 
conducted at T1 and T2. 469 

• The space-time interaction (STI) can be tested in repeated surveys without replication, using the 470 
STI method (Legendre et al. 2010). When no significant interaction is found between space and 471 
time in multivariate community data, (a) we should not expect to identify sites that have 472 
exceptional values of TBI except for type I error cases. The test of space-time interaction can thus 473 
be considered as a global test of the STI indices in the comparison of two surveys carried out at 474 
times 1 and 2. (b) In that case, STI analysis allows us to test the overall difference between times, 475 
using MEM eigenfunctions as covariables. For two surveys only (T1, T2), testing the interaction 476 
with the STI method requires, however, that the coordinates of the sites be known. If they are not, 477 
the interaction cannot be tested. 478 

• One can plot maps of the Di dissimilarities, computed at all sites i, to assess their variation. 479 
Analysis of the spatial variation of the Di values can be conducted, using for example a 480 
correlogram or variogram, kriging, or Moran’s eigenvector map analysis described for example 481 
in Legendre & Legendre (2012, Chapter 14 and references therein).  482 

• For field experiments with multiple treatments, as shown in Ecological application 1, TBI 483 
analysis is complementary to principal response curves (PRC), a method developed by van den 484 
Brink & ter Braak (1999) to analyse the results of experiments conducted over time involving 485 
multivariate response data (e.g. community composition data) and multiple treatments. The data 486 
in Ecological application 1 were those used by van den Brink & ter Braak (1999) to illustrate the 487 
PRC method. 488 

• To determine what are the species responsible for the main changes in community composition, 489 
carry out RDA on chord, Hellinger, or log-chord-transformed community data on the two data 490 
matrices combined, Y = rbind(Y.T1, Y.T2), with the binary factor “T1, T2” as the explanatory 491 
variable, and a factor representing the sites as covariable. The RDA plot will have a single 492 
canonical axis (abscissa) and the species more abundant at T1 and T2 will have long arrows 493 
pointing left or right. 494 

• Other methods for space-time analysis have been described in the Legendre & Gauthier (2014) 495 
review paper. 496 

 The simulation study reported in this paper could be extended to include other aspects not 497 
covered in the simulations reported in Appendix S1; for example simulations of community 498 
composition data forming spatial gradients, which should be tested using torus permutations. 499 
Simulation ventures of that kind would represent nice projects for honour or M.Sc. students in 500 
statistical ecology or in statistics. 501 
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Table 1. The dissimilarities (top panel) and p-values (lower panel) associated with the tests of 558 
significance of the distances between T1 (survey #4) and T2 (survey #11), for 12 mesocosms 559 
(M1 to M12) shown in order of increased insecticide doses. The p-values were corrected for 560 
multiple testing (Holm correction); corrected significant values at the 0.05 level are marked with 561 
an asterisk (*). Each test involved 9999 random permutations. The maximum possible value is 1 562 
for the %difference and Ružička dissimilarities, and  = 1.4142 for the chord, Hellinger and 563 
log.chord distances. The Euclidean distance does not have an upper bound. Permutation method 1 564 
was used in these tests.  565 

___________________________________________________________________________________ 566 

Mesocosms M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 567 

Treatment, µg/L 0 0 0 0 0.1 0.1 0.9 0.9 6 6 44 44 568 

___________________________________________________________________________________ 569 

TBI dissimilarity values 570 

%difference D 0.433 0.449 0.405 0.459 0.496 0.439 0.488 0.485 0.474 0.621 0.735 0.672 571 

Ružička D 0.604 0.620 0.576 0.630 0.663 0.610 0.656 0.653 0.643 0.766 0.847 0.804 572 

Chord D 0.806 0.836 0.688 0.774 0.872 0.777 0.884 0.895 0.807 0.981 1.144 1.075 573 

Hellinger D 0.859 0.863 0.807 0.860 0.922 0.848 0.930 0.895 0.887 1.072 1.194 1.101 574 

Log.chord D 0.862 0.865 0.814 0.865 0.929 0.854 0.933 0.899 0.899 1.078 1.200 1.106 575 

Euclidean D 26.33 26.55 22.63 22.44 27.24 24.36 26.43 27.12 23.27 24.82 29.79 27.72 576 

___________________________________________________________________________________ 577 

p-values corrected for multiple testing 578 

%difference D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.342 0.001* 0.001* 579 

Ružička D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.342 0.001* 0.001* 580 

Chord D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.001* 0.001* 581 

Hellinger D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.173 0.001* 0.001* 582 

Log.chord D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.174 0.001* 0.001* 583 

Euclidean D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.414 1.000 584 

___________________________________________________________________________________ 585 

 586 

2



























































 29 

 
 

Figure S5.1. Map of the 25 brackish sites (red symbols) of the Chesapeake Bay ecological survey, 
produced with the RgoogleMaps package in R. Comparison of survey in years 2005 and 2008: point 
sizes are proportional to the TBI indices (percentage difference D). + signs indicate the 17 sites 
where gains in abundances-per-species dominated; – signs, the 8 sites where losses dominated. 
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Table S5.1. Number of species in subsets of the Chesapeake fauna data surveyed during 13 years, 
spring and fall. In total, 205 benthic species were found at the 27 survey sites. 

 

 Spring Fall Spring and fall 

Freshwater 

(2 sites) 

93 

 

58 

 

105 

 

Brackish 

(25 sites) 

128 121 155 

All survey sites 

(27 sites) 

181 142 205 

 
 
Results of calculations with R function TBI() 
 
Compare Chesapeake Bay benthic fauna, 25 brackish sites, years 2005 and 2008, fall survey data. 
 
1. Comparison based upon species abundance data, percentage difference D 
 
( res.fauna.05.08.pcdiff = TBI(Y1, Y2, "%diff", pa.tr=FALSE, permute.sp=1, nperm=99999, 
BCD=TRUE, test.BC=TRUE, test.t.perm=TRUE, clock=TRUE) ) 
# Computation time = 792.754000  sec  
 
----- 
$TBI 
 [1] 0.6766467 0.5704698 0.9411765 1.0000000 0.6309524 0.7685950 1.0000000 1.0000000 
 [9] 0.6960000 0.5777778 0.8632812 0.5081967 0.3229572 0.7083333 0.5164835 0.5843137 
[17] 1.0000000 0.8983051 0.6385965 0.4244604 0.6256158 0.3846154 1.0000000 0.8020833 
[25] 0.7611940 
 
$p.TBI, nperm=9999 
 [1] 0.3929 0.6419 0.0032 0.0033 0.4416 0.1919 0.0001 0.0001 0.3223 0.5884 0.0705 
[12] 0.7248 0.9681 0.3324 0.7594 0.6169 0.0001 0.0381 0.4727 0.9135 0.5359 0.9165 
[23] 0.0001 0.1564 0.2146 
 
$p.adj, nperm=9999 
 [1] 1.0000 1.0000 0.0672* 0.0672* 1.0000 1.0000 0.0025* 0.0025* 1.0000 1.0000 1.0000 
[12] 1.0000 1.0000 1.0000 1.0000 1.0000 0.0025* 0.7239 1.0000 1.0000 1.0000 1.0000 
[23] 0.0025* 1.0000 1.0000 
 
$p.TBI, nperm=99999 
 [1] 0.39289 0.64205 0.00322 0.00319 0.44089 0.19191 0.00002 0.00002 0.32282 0.58789 
[11] 0.07023 0.72529 0.96808 0.33231 0.76022 0.61646 0.00001 0.03828 0.47287 0.91356 
[21] 0.53649 0.91707 0.00001 0.15645 0.21396 
 
$p.adj, nperm=99999 
 [1] 1.00000 1.00000 0.06699 0.06699 1.00000 1.00000 0.00046 0.00046 1.00000 1.00000 
[11] 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00025 0.72732 1.00000 1.00000 
[21] 1.00000 1.00000 0.00025 1.00000 1.00000 
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$BCD.mat 
         B/(2A+B+C) C/(2A+B+C) D=(B+C)/(2A+B+C) Change 
Site.1  0.167664671 0.50898204        0.6766467    +   
Site.2  0.436241611 0.13422819        0.5704698    –   
Site.3  0.029411765 0.91176471        0.9411765    +   
Site.4  0.250000000 0.75000000        1.0000000    +   
Site.5  0.053571429 0.57738095        0.6309524    +   
Site.6  0.347107438 0.42148760        0.7685950    +   
Site.7  0.950000000 0.05000000        1.0000000    –  * Abundances-per-species losses 
Site.8  0.400000000 0.60000000        1.0000000    +  * 40% Ab.-per-sp. losses, 60% gains 
Site.9  0.576000000 0.12000000        0.6960000    –   
Site.10 0.100000000 0.47777778        0.5777778    +   
Site.11 0.224609375 0.63867188        0.8632812    +   
Site.12 0.483606557 0.02459016        0.5081967    –   
Site.13 0.190661479 0.13229572        0.3229572    –   
Site.14 0.229166667 0.47916667        0.7083333    +   
Site.15 0.340659341 0.17582418        0.5164835    –   
Site.16 0.482352941 0.10196078        0.5843137    –   
Site.17 0.000000000 1.00000000        1.0000000    +  * All species gains 
Site.18 0.135593220 0.76271186        0.8983051    +   
Site.19 0.057894737 0.58070175        0.6385965    +   
Site.20 0.316546763 0.10791367        0.4244604    –   
Site.21 0.571428571 0.05418719        0.6256158    –   
Site.22 0.161538462 0.22307692        0.3846154    +   
Site.23 0.098039216 0.90196078        1.0000000    +  * All species gains 
Site.24 0.005208333 0.79687500        0.8020833    +   
Site.25 0.008955224 0.75223881        0.7611940    +   
 
$BCD.summary 
 mean(B/den) mean(C/den)   mean(D)   B/(B+C)   C/(B+C) Change 
   0.2646503   0.4513519 0.7160022 0.3696222 0.6303778    +   
 
$t.test_B.C, nperm=99999 
                mean(B-C)      Stat    p.param  p.perm   p<=0.05 
Paired t.test  -0.1867016 -1.826046 0.08031088 0.08221           
 
$BC 
[1] NA 
----- 
 

 
 
 
Note – The site names, Site.1 to Site.25, in the function output files correspond to the following 
site names on the map: 
 
site.names 
 [1] "S1"   "S15"  "S201" "S202" "S203" "S204" "S22"  "S23"  "S24"  "S26"  
[11] "S29"  "S40"  "S43"  "S44"  "S47"  "S51"  "S52"  "S6"   "S62"  "S64"  
[21] "S66"  "S68"  "S71"  "S74"  "S77" 
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2. Comparison based upon species occurrence (i.e. presence-absence) data, Sørensen D  
 
( res.fauna.05.08.sor = TBI(Y1, Y2, "sorensen", pa.tr=FALSE, permute.sp=1, nperm=9999, 
BCD=TRUE, test.BC=TRUE, test.t.perm=TRUE, clock=TRUE) ) 
# Computation time = 63.074000  sec 
 
----- 
$TBI 
 [1] 0.4838710 0.4166667 0.6666667 1.0000000 0.2727273 0.1578947 1.0000000 1.0000000 
 [9] 0.3846154 0.1818182 0.3600000 0.3333333 0.2500000 0.4000000 0.2500000 0.2857143 
[17] 1.0000000 0.5238095 0.2592593 0.2592593 0.3333333 0.1538462 1.0000000 0.1304348 
[25] 0.2592593 
 
$p.TBI 
 [1] 0.1533 0.3568 0.0259 0.0032 0.7316 0.9651 0.0001 0.0001 0.4021 0.9175 0.4696 
[12] 0.5722 0.8212 0.3680 0.8236 0.7183 0.0001 0.1347 0.7819 0.8123 0.6038 0.9808 
[23] 0.0001 0.9646 0.7098 
 
$p.adj 
 [1] 1.0000 1.0000 0.5180 0.0672? 1.0000 1.0000 0.0025* 0.0025* 1.0000 1.0000 1.0000 
[12] 1.0000 1.0000 1.0000 1.0000 1.0000 0.0025* 1.0000 1.0000 1.0000 1.0000 1.0000 
[23] 0.0025* 1.0000 1.0000 
 
$BCD.mat 
        B/(2A+B+C) C/(2A+B+C) D=(B+C)/(2A+B+C) Change 
Site.1  0.06451613 0.41935484        0.4838710    +   
Site.2  0.25000000 0.16666667        0.4166667    –   
Site.3  0.16666667 0.50000000        0.6666667    +   
Site.4  0.50000000 0.50000000        1.0000000    +   
Site.5  0.09090909 0.18181818        0.2727273    +   
Site.6  0.15789474 0.00000000        0.1578947    –   
Site.7  0.87500000 0.12500000        1.0000000    –  * 87.5% species losses, 22.5% gains 
Site.8  0.50000000 0.50000000        1.0000000    +  * 50% losses, 50% gains 
Site.9  0.15384615 0.23076923        0.3846154    +   
Site.10 0.09090909 0.09090909        0.1818182    +   
Site.11 0.16000000 0.20000000        0.3600000    +   
Site.12 0.22222222 0.11111111        0.3333333    –   
Site.13 0.08333333 0.16666667        0.2500000    +   
Site.14 0.20000000 0.20000000        0.4000000    +   
Site.15 0.12500000 0.12500000        0.2500000    +   
Site.16 0.14285714 0.14285714        0.2857143    +   
Site.17 0.00000000 1.00000000        1.0000000    +  * All species gains 
Site.18 0.38095238 0.14285714        0.5238095    –   
Site.19 0.11111111 0.14814815        0.2592593    +   
Site.20 0.11111111 0.14814815        0.2592593    +   
Site.21 0.28571429 0.04761905        0.3333333    –   
Site.22 0.03846154 0.11538462        0.1538462    +   
Site.23 0.36363636 0.63636364        1.0000000    +  * All species gains 
Site.24 0.04347826 0.08695652        0.1304348    +   
Site.25 0.11111111 0.14814815        0.2592593    +   
 
$BCD.summary 
 mean(B/den) mean(C/den)   mean(D)  B/(B+C)  C/(B+C) Change 
   0.2091492   0.2453511 0.4545004 0.460174 0.539826    +   
 
$t.test_B.C 
                mean(B-C)       Stat   p.param p.perm   p<=0.05 
Paired t.test  -0.0362019 -0.6218665 0.5398928 0.5533           
 
$BC 
[1] NA 

 



#                                 Appendix S6, R function 
# 
# An R function to standardize environmental data prior to TBI analysis. 
 
 
#' Special standardization for environmental data prior to TBI analysis.  
#' 
#' After standardization, all variables will have the same weight (i.e. they will   
#' all contribute the same variance) in the calculation of TBI indices. 
#' 
#' @param mat1 First data matrix, class matrix or data.frame. 
#' @param mat2 Second data matrix, class matrix or data.frame. 
#' @param non.neg=TRUE : make the data non-negative before scaling (recommended). 
#'        non.neg=FALSE: keep standardized data with signs (due to centring). 
#'  
#' @return A list with the two matrices standardized as dexscribed above. 
#' 
#' @details  
#' The two data sets are joined into a single data matrix, Y = rbind(Y.T1, Y.T2).  
#' Y is standardized [Y.stand = scale(Y)], then it is separated into two tables of   
#' the sizes of the original data matrices, before analysis with function TBI(). 
#' 
#' Explanation:  
#' (a) the two data tables are joined into a single data matrix, Y = rbind(Y.T1,    
#' Y.T2), before standardization. In this way, the differences in values of each    
#' variable for a given pair of sites in the two tables will remain comparable    
#' to the differences ofcomputed from the original unstandardized values; in this    
#' way, the distances computedbetween sites in T1 and T2 will be meaningful. This  
#' precaution is important when there are differences in means between T1 and T2.  
#' (b) Standardizing the variables insures that all variables will contribute the    
#' same variance to the calculation of the TBI indices; the variances will not    
#' depend on thephysical units of the variables or other contingencies that make  
#' the variances unequal. 
#' 
#' Argument non.neg=TRUE makes the values non-negative to produce data without  
#' negative signs. It does not change the results of the TBI tests. 
#' 
#' @author  Pierre Legendre \email{pierre.legendre@umontreal.ca}, 2018 
'scale.for.TBI' <-  
 function(mat1,mat2,  
    non.neg=TRUE) 
 { 
 mat1 <- as.matrix(mat1) 
 mat2 <- as.matrix(mat2) 
 dim.1 <- dim(mat1) 
 dim.2 <- dim(mat2) 
 if(!is.numeric(mat1)) stop("First data matrix not numeric") 
 if(!is.numeric(mat2)) stop("Second data matrix not numeric") 
 if(dim.1[1] != dim.2[1]) stop("Data sets have different numbers of rows") 
 if(dim.1[2] != dim.2[2]) stop("Data sets have different numbers of columns") 
 # 
 tmp <- scale(rbind(mat1,mat2)) 
 if(non.neg) tmp <- tmp - min(tmp)    
 mat1 <- tmp[1:n12,] 
 mat2 <- tmp[(n12+1):(2*n12),] 
 list(mat1=mat1, mat2=mat2) 
 } 




