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Summary

1. Indicator species are often determined using an analysis of the relationship between the species occurrence

or abundance values from a set of sites and the classification of the same sites into site groups (habitat types,

community types, disturbance states, etc.). It may happen, however, that a particular site group has no indi-

cator species even if its sites have a community composition that is clearly distinct from the sites of other site

groups. This motivates an exploration of the indicator value of not only individual species but also species

combinations.

2. Here, we present a novel statistical approach to determine indicators of site groups using species data. Unlike

traditional indicator value analysis, we allow indicators to be species combinations in addition to single species.

We require that all the species forming the combination must occur in the site to use the combination as an

indicator.We present a simple algorithm that identifies the set of indicators (each one being either a single species

or a species combination) that show high positive predictive value for the target site group.Moreover, we demon-

strate the use of the percentage of sites of the site group where at least one of its valid indicators occurs to deter-

mine whether the group can be reliably predicted throughout its range.

3. Using a simulation study, we show that if two species are not strongly correlated and their frequency in the

data set is larger than the frequency of sites belonging to the site group, the joint occurrence of the two species has

higher positive predictive value for the site group than the two species taken independently.

4. We illustrate the proposed method by determining which combinations of vascular plants can be used as

indicators for 29 shrubland and forest vegetation types of NewZealand.

5. The proposed methodology extends traditional indicator value analyses and will be useful to develop multi-

species ecological or environmental indicators. Further, it will allow newly surveyed sites to be reliably assigned

to previously defined vegetation types.

Key-words: diagnostic species, environmental indication, indicator species, indicator value, vegeta-

tion classification, vegetation types

Introduction

Determining the occurrence or abundance of a small set of

indicator species, as an alternative to sampling the entire com-

munity, has been particularly useful in long-term environmen-

tal monitoring for conservation or ecological management.

Species are chosen as indicators if they (i) reflect the biotic or

abiotic state of the environment; (ii) provide evidence for the

impacts of environmental change; or (iii) predict the diversity

of other species, taxa or communities within an area (Mc-

Geoch 1998; Niemi & McDonald 2004). Indicator species are

often determined by analysing the relationship between the

species occurrence or abundance values from a set of surveyed

sites and the classification of these sites into groups (Dufrêne &

Legendre 1997; De Cáceres & Legendre 2009). The classifica-

tion of sites into groups (hereafter called ‘site groups’) may

have been derived from the similarities in environmental condi-

tions among sites (e.g. habitat types or disturbed/undisturbed

states), or in species composition (e.g. community or vegeta-

tion types); site groups may also have been provided by the

study design (e.g. when comparing across geographic regions

or repeated surveys) or obtained using other criteria, such as

land use classes.With respect to individual species, the analysis

of the strength of its association to site groups provides a char-

acterization of the species niche preferences and allows its

degree of ecological specialization to be assessed

(De Cáceres, Legendre & Moretti 2010b; Chazdon, Chao &

Colwell 2011). With respect to the site group, the list of species

strongly associated with it allows the determination of whether

a newly surveyed site can be labelled with the concept that the

site group represents. Owing to their predictive value, indicator

species possess an undeniable appeal for conservationists and*Correspondence author. E-mail: miquelcaceres@gmail.com
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land managers as they provide a cost- and time-efficient mean

to assess ecosystem change (McGeoch&Chown 1998; Hilty &

Merenlender 2000; Carignan & Villard 2002; McGeoch, Van

Rensburg&Botes 2002).

Several alternatives exist for the statistical determination of

indicator species (e.g., Hill 1979; Dufrêne & Legendre 1997;

Bruelheide 2000; Chytrý et al. 2002; Chazdon, Chao&Colwell

2011; Urban et al. 2012). Among them, the most frequently

used approach involves the assessment of the association

between species and site groups using correlation or indicator

value indices (Dufrêne & Legendre 1997; Chytrý et al. 2002;

De Cáceres & Legendre 2009). Correlation indices assess the

relative positive or negative preference of the species for the site

group, compared with the remaining groups (Chytrý et al.

2002). In contrast, indicator value indices are non-negative and

assess to what extent the sites of the target site groupmatch the

sites where the species is found (De Cáceres, Legendre &

Moretti 2010b).

Typically, the output of an indicator value analysis for a

given site group consists of the list of species that are signifi-

cantly associated with it, presented in a decreasing indicator

value order. When any of the indicator species is found in a

newly surveyed site, the site can be assigned to the site group.

The more indicator species are found in the newly surveyed

site, the higher the confidence on the assignment. To quantify

this degree of confidence, however, it would be desirable to

know the probability of the indicated site group given the joint

occurrence of all the indicator species found; unfortunately,

this conditional probability is not provided by the traditional

indicator value analysis. Moreover, in some occasions, the list

of indicator species for a particular site group is empty even if

its sites have a community composition that is clearly distinct

from sites of other site groups. In these cases, one could use the

joint occurrence of several species to indicate the site group.

These issues motivate the need to explore the indicator value of

not only individual species, but species combinations.

Here, we present a new statistical approach to determine

indicators of site groups using species data. In addition to

(single) indicator species as produced in standard indicator spe-

cies analysis, the newmethod also searches for indicator species

combinations. In the latter case, it is the joint (i.e. simultaneous)

occurrence of several species in a site that is used as indication

of the site group. Species assemblages have been used to

develop ecological or environmental indicators. For example,

Butler et al. (2012) recently provided a protocol to determine

which bird species should be considered when building

population-based indices aimed at representing the status of

the wider bird community. There are also examples of indica-

tor value analyses conducted using supra-specific taxonomic

entities (genera, families, etc.) or even functional guilds (e.g.

Basset et al. 2004). In these analyses, the occurrence of a single

species, among those conforming the species group, was

enough for indication. To our knowledge, the simultaneous

occurrence of several species has not yet been considered

within the framework of indicator value analysis.

In this article, we first briefly review the original indicator

value analysis developed by Dufrêne & Legendre (1997). We

then generalize the method from single species to species com-

binations and present the steps that allow a set of valid indica-

tors for a given site group to be determined; we hereafter use

the word ‘indicator’ to denote an entity that is used for indica-

tion.We then present the results of a simulation study showing

the potential benefits of considering species combinations as

indicators. After that, we illustrate our methodological sugges-

tions in an example where we determine indicator plant combi-

nations for 29 types of shrublands and forests in New Zealand.

Finally, we discuss the advantages and limitations of this new

approach, its potential applications and relate it to other exist-

ing extensions of themethod.

Indicator value analysis for single species

This section briefly reviews the concepts and calculations of

traditional indicator value analyses. Imagine that a given spe-

cies S has been detected in a newly surveyed site and one is

interested in knowing whether the site belongs to a given site

group G (Fig. 1a). After finding the species, one would like to

know A = P(G|S), the probability that the surveyed site

belongs to the target site group G given the fact that species S

has been found. This conditional probability (A) is called the

specificity or positive predictive value of species S as indicator of

the site group. To be useful, indicator species not only need to

have a high positive predictive value, but they also need to be

easy to find. The higher the probability of finding the species in

sites belonging to the site group (B = P(S|G)), the more likely

it is that the species will be found in newly surveyed sites of the

same kind. This second conditional probability (B) is called the

fidelity or sensitivity of the species as indicator of the target site

group (Murtaugh 1996; Dufrêne & Legendre 1997; De Cáceres

&Legendre 2009).

The input of an indicator value analysis consists of two ele-

ments: (i) a site-by-species community data table X containing

the occurrence or abundance values of species at several

locations or sites; and (ii) a partition of the sites into a set of no-

noverlapping classes (site groups). In their work, Dufrêne &

Legendre (1997) proposed that good indicator species should

be at the same time ecologically restricted to the target site

group and frequent within it. They defined the Indicator Value

(IndVal) index of a species in a site group as the product of A

and B. The sensitivity of the species, B (which they called

fidelity), was simply estimated as the relative frequency of the

species in sites belonging to the target site group (Table 1). In

contrast, the positive predictive value, A (which they called

specificity), could be calculated from either presence–absence

or abundance data. In fact, as described in the study by De

Cáceres & Legendre (2009), there are at least four different

ways of estimating A. If only presence–absence data are used,

and assuming a representative sample of sites, an appropriate

estimator of A is the number of occurrences of the species

within sites belonging to the target site group, divided by the

number of occurrences of the species S across all sites (Apa in

Table 1). Alternatively, A can be estimated from abundance

data as the sum of abundance values of the species within sites

belonging to the site group divided by the sum of abundance
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values across all sites (Aind in Table 1). In these first two indi-

ces, we assumed that the target site group was not over- or

under-sampled with respect to others in the data set. It often

happens, however, that some site groups are over-represented

with respect to others. In these cases, we may decide to give the

same weight to all site groups in the calculation of A irrespec-

tive of the number of sites each group actually contains. For

presence–absence data, we would calculate the relative fre-

quency of the species in the target site group divided by the

sum of relative frequencies over all groups (seeAg
pa in Table 1),

whereas for abundance data, A is then defined as the mean

abundance of the species in the target site group divided by the

sum of mean abundance values over all groups (Ag
ind in

Table 1; this was the index suggested by Dufrêne & Legendre

1997).

After calculating the IndVal value for all site groups, one

looks for the site group to which the species is maximally asso-

ciated. To report that the species is associated with this site

group, one-first needs to reject the null hypothesis that negates

this association. In traditional indicator value analysis, the

maximum IndVal value across site groups is usually tested for

statistical significance using a permutation test, a procedure

that involves comparing an observed test statistic with a distri-

bution of the same statistic obtained by randomly reordering

the data (Dufrêne & Legendre 1997; De Cáceres & Legendre

2009; De Cáceres, Legendre & Moretti 2010b). Alternatively,

permutation tests exist to test statistical hypotheses regarding

the association with each site group separately (Bakker 2008;

De Cáceres & Legendre 2009). As a complement to testing null

hypotheses, we can assess the precision of estimates ofA,B and

their product by calculating confidence intervals. Unfortu-

nately, the exact or approximated parametric distribution is

difficult to determine for many of the above indices. Alterna-

tively, one can use the percentile bootstrap method, which

involves resampling the observed datawith replacement to gen-

erate an approximate distribution of the estimator, followed by

taking the percentiles a/2 and 1 � a/2 of the empirical distribu-

tion as the (1 � a) confidence limits (Manly 1997). Using com-

puter simulations, De Cáceres & Legendre (2009) studied the

performance of the simple percentile bootstrap method to

obtain confidence intervals for indicator value indices.

Indicator value analysis for species combinations

RATIONALE OF THE METHOD

Instead of considering only one species at a time, this section

defines indicators formed by combining the presence or abun-

dance data of k species, S1, S2 … Sk. As an example, we first

consider the indicator consisting of the joint occurrence of

two species, say S1 and S2 (Fig. 1b). To assess the positive

predictive value of this indicator, we need to estimate P(G|

S1 ∩ S2), that is, the probability of the surveyed site belong-

ing to the target site group given that S1 and S2 have been

Env. 1 

En
v.

 2
 

A = P(G | S) = P(G S)

P(S)
B = P(S | G) = P(G S)

P(G)

A = P(G | S1 S2) = P(G S1 S2)

P(S1 S2)
B = P(S1 S2 | G) = P(G S1 S2)

P(G)

(a)

(b)

Fig. 1. Concepts of positive predictive value and sensitivity for a single

species (a) and for a species pair (b). Open ovals represent the range of

environmental conditions suitable for species Si, whereas the dark grey

oval represents the environmental conditions corresponding to the defi-

nition of the target site group G. Thick dashed lines delimit the occur-

rence of indicators (a single species or a species pair).

Table 1. Formulae used to estimate the positive predictive value (A)

and sensitivity (B) of an indicator for a given site group. The same for-

mulae are valid for species or species combinations, but different com-

munity data tables are used as input (either X or C, respectively; these

are defined in the text) to calculate the indicator value statistics

Nonequalized Group equalized

Positive predictive value for

presence–absence data
Apa ¼ np

n Ag
pa ¼

np=NpXK

k¼1
nk=Nk

Positive predictive value for

abundance data

Aind ¼ ap
a

Ag
ind ¼ ap=NpXK

k¼1
ak=NkSensitivity B ¼ np

Np

Notation is as in De Cáceres & Legendre (2009): Np, number of sites

that belong to the target site group; n, number of occurrences of the

indicator across all sites; np, number of occurrences of the indicator

within sites that belong to the target site group;Nk, number of sites that

belong to the site group k; nk, number of occurrences of the indicator

within sites that belong to the site group k; ap, sum of the abundance

values of the indicator within the target site group; ak, sum of the abun-

dance values of the indicator within sites of the site group k; a, sum of

the abundance values of the indicator over all sites.
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found together. This conditional probability can be estimated

as the number of sites within site group G where both S1 and

S2 occur, divided by the number of sites where both S1 and

S2 occur across all sites (note that we do not use ‘∩’ as a set

operator but to specify the set of sites where both S1 and S2
occur). As there are equal or fewer sites where two species co-

occur than sites where only one of the species is present, P(G|

S1 ∩ S2) will usually be estimated using a smaller sample size

than P(G|S1) or P(G|S2) and hence the estimation will be less

precise. For the same reason, the sensitivity of the species

pair, P(S1 ∩ S2|G), will always be equal to or smaller than P

(S1|G) and P(S2|G). Nevertheless, the indicator consisting of

the two species jointly may have higher positive predictive

value compared with the indicators of the two species consid-

ered independently because it includes information coming

from two events that are generally not completely correlated.

If the two species were completely correlated, then consider-

ing the pair would not allow users to obtain more informa-

tion. In general, to assess the indicator value for any

combination of k species (S1, S2 … Sk), we need to estimate P

(G|I) and P(I|G), the positive predictive value and sensitivity

of the indicator I = S1 ∩ … ∩ Sk consisting of the joint

occurrence of all species S1 to Sk. Accounting for the joint

occurrence of increasing numbers of species increases the

ability to indicate specific ecological conditions (Pignatti

1980), which may lead to higher A values. However, as

shown for the species pair, considering species combinations

instead of species separately will often lead to lower values

of B and to lower precision of A estimates. This limits the

number of species that can be considered simultaneously in

an indicator species combination (Pignatti 1980; Bruelheide

2000).

THE COVERAGE OF THE TARGET SITE GROUP

The target site group may sometimes have a broad geo-

graphic range (for example, if it represents a widespread vege-

tation type). In such case, all indicators (whether species or

species combinations) may have low sensitivity because it is

likely that each of them will occur within only a subset of the

geographical range. This potential limitation of indicators

taken individually is the reason why having a set of indicators

can be most useful: one indicator can be used in some parts

of the range of the target site group, whereas another one can

be used in other parts. Thus, an important quantity that com-

plements a given list of indicators is their pooled coverage of

the target site group, which we define as the percentage of sites

of the site group where at least one of the indicators occurs.

The coverage of the site group provided by a single indicator

is equal to its sensitivity.

ALGORITHM

In what follows we describe the steps of an indicator species

analysis considering species combinations. Unlike the tradi-

tional analysis, a separate analysis is conducted for each target

site group.

Step 1 – selecting candidate species

Selecting the species that are to be combined is not manda-

tory, but reduces the number of species combinations to be

explored in the analysis. An intuitive approach for selecting

candidate species involves discarding those species that

appear with low frequency in sites belonging to the site group.

The analyst can further restrict the list of candidate species by

including additional criteria (McGeoch 1998), for example

discarding the species that are difficult to identify taxonomi-

cally.

Step 2 – setting amaximumnumber to the species forming a

combination

As species combinations involving too many species are not

normally useful as indicators, limiting the maximum number

of species forming a combination can substantially reduce the

computational requirements of the analysis. Let J be the num-

ber of candidate species andK themaximumnumber of species

forming a species combination (clearly 1 � K � J). The

total number of species combinations that one can form is a

sum of combinatorial numbers,
PK

k¼1

J
k

� �
. For example, if

from a set of ten species (i.e. J = 10), one wishes to generate

combinations of up to three species (i.e. K = 3), the total num-

ber of combinations to consider will be 10 (singletons) + 45

(pairs) +120 (triplets) = 175. If all possible combinations of

candidate species were to be considered (i.e. if K = J), the

number of combinations to explore would be 2K � 1 (= 1023

if J = 10).

Step 3 – calculation of data tableC

Estimating the two components of indicator value for species

combinations is essentially the same as for single species.

The only difference is that the first element of the input for

the indicator value analysis is no longer a site-by-species data

table X, but a data table C with sites as rows and species

combinations as columns. Table C will contain as many col-

umns as species combinations the analyst wants to consider.

Each entry in this data table contains the ‘occurrence’ or

‘abundance’ value of the corresponding species combination

in the corresponding site. Values in C are calculated as fol-

lows. If X contains abundances, the ‘abundance’ of the spe-

cies combination in a site is calculated as the minimum

abundance value in that site among the abundances of all

the species included in the combination. For example, if the

individual counts for species S1, S2 and S3 in a particular site

are 10, 15 and 8, respectively, the value in C for combination

I = S1 ∩ S2 ∩ S3 in that site will be 8. We use the mini-

mum, and not other statistics like the mean, because we

define the indicator as the joint presence of all the species in

the combination (i.e. the indicator does not ‘occur’ if one of

the species has zero abundance). Analogously, if X contains

presence–absence data the ‘occurrence’ of the species combi-

nation in a site will be a presence (one) if all the species of

the combination are found, and an absence (zero) otherwise.

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution
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Step 4 – calculation of indicator value components

Once data table C is available, the estimation of A = P(G|I)

and B=P(I|G) for species combinations is performed

straightforwardly using the formulae of Table 1 andC, instead

ofX, as input data.

Step 5 – selecting valid indicators

Both hypothesis testing and confidence interval calculation

can be conducted for species combinations, as described in the

previous section for single species. However, conducting tests

of hypotheses is not a good strategy to find the best indicators

because a large number of species combinations can be signifi-

cantly associated with the target site group, especially if the site

groups were originally defined using species composition data

(De Cáceres & Legendre 2009; De Cáceres, Legendre &

Moretti 2010b). A more practical approach is to determine

those indicators that are strongly restricted to the target site

group. To determine the set of valid indicators, we recommend

choosing a threshold for minimum positive predictive value

(At). This threshold can be interpreted as one minus the maxi-

mum false-positive rate that the user is prepared to accept in

future assignments (e.g. if At = 0�6, and then all valid indica-

tors will erroneously indicate the target site group less than

40% of the times). Then, a given species or species combina-

tion will be a valid indicator if the lower bound of the 95% con-

fidence interval for A is equal or higher than threshold At.

Using the lower bound of the confidence interval instead of the

point estimation as selection criteria is important to ensure sta-

tistical significance because, as indicated above, the precision

of estimates can be very low with species combinations. Addi-

tionally, one can also set a minimum value for sensitivity (Bt)

and discard those indicators that are powerful but occur too

rarely (e.g. in less than 25% of sites).After determining the set

of valid indicators, one should calculate the coverage of the

site group that this set provides. If the coverage is small (e.g.

< 40%), thismeans that the site group cannot be predictedwith

the desired predictive power in most of its range. Repeating

this step with a lower threshold for positive predictive value

(At) may increase the coverage, at the expense of increasing the

rate of false positives in future assignments. Plotting the rela-

tionship between the desired positive predictive value of assign-

ments and the coverage of the site group can be useful to guide

the choice ofAt (see example application below, Fig. 3).

To increase the accessibility of our proposals, we imple-

mented steps 3-5 of the above algorithm in a function (called

‘indicators’) written in R language (R Development Core

Team 2012) and added it to the R library ‘indicspecies’

(DeCáceres &Legendre 2009).

Simulation study

We conducted a simulation study to better understand where it

may be beneficial to consider species combinations rather than

single species, as indicators. Let S1 and S2 be two potential

indicator species of a target site group G. The question is

whether the species pair (S1 ∩ S2) will have higher positive

predictive value as indicator of G than either S1 or S2 taken

individually. This will depend on the relationship between each

species andG, but also on the relationship between the two spe-

cies. Furthermore, if the positive predictive value of both S1
and S2 is lower than At but that of S1 ∩ S2 is higher, one

should observe an increase in the coverage of the site group by

considering the species pair as indicator. With these expecta-

tions inmind, we used the R package ‘binarySimCLF’ (Qaqish

2003) to generate three correlated randombinary variables (i.e.

G, S1 and S2) with known marginal proportions (P(S1), P(S2)

and P(G)) and correlation structure (rS1S2, rS1G and rS2G). To

reduce the number of parameter combinations to explore, we

restricted our study to P(S1) = P(S2) (i.e. the two species occur

with the same frequency in the data set) and rS1G = rS2G (i.e.

the species are equally correlated with the target site group).

For each simulated data set, we evaluated (1) the difference in

positive predictive value of S1 ∩ S2 with respect to the maxi-

mum value observed between S1 and S2; (2) the difference in

coverage obtained when considering S1 ∩ S2 as indicator,

compared with not considering it. Each simulated data set

included 100 sites, and for each parameter combination, we

averaged the results obtained for 100 simulated data sets.

If the two species occur more frequently than the site group

(P(Si) = 0�50, P(G) = 0�25), we found that the species pair had

larger positive predictive value than the single species indica-

tors only if both species had a moderate correlation with the

site group (rS1G = rS2G > 0�3; Fig. 2a). Moreover, the lower

the correlation between the two species (rS1S2), the better the

advantage of considering the species pair. An increase in the

coverage of the target site group was observed in the same situ-

ations (Fig. 2b). If the species occur with the same frequency

as the site group [P(Si) = P(G) = 0�50], one could still gain

positive predictive value by considering the species pair

(Fig. 2c). However, in this case, the single species indicators

tended to have higher positive predictive value than in the pre-

vious case; hence, including the species combination did not

increase the coverage of the target site group substantially

(Fig. 2d). From these results, one would expect species combi-

nations to be most useful when the component species of the

combination are common, have some preference for the site

group and a low degree of correlation to each other. Such a sit-

uation could occur, for example, if there is a partial overlap

between the habitat niches of two species and the target site

group is a habitat in the zone of overlap.

Example application –NewZealand’swoody
vegetation types

New Zealand’s indigenous forests and shrublands cover ca.

23% and 10% of its land surface, respectively. The forests are

predominantly evergreen and dominated by different combi-

nations of southern beeches (Nothofagus spp.), broadleaved

angiosperms, the kauri (Agathis australis) and other conifers,

mainly podocarps. Shrublands occur in subalpine areas and in

lowland and montane regions that were presumably forested

in pre-human times (Wardle 1991). Wiser et al. (2011) used

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution
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1177 systematically sampled vegetation plots as the basis for a

quantitative classification exercise that produced 24 woody

vegetation types. More recently, Wiser &De Cáceres (in press)

used a fuzzy clustering framework (De Cáceres, Font & Oliva

2010a) to validate and extend this classification. For this sec-

ond classification analysis, the authors merged the 1177 plots

with vegetation plot records from the New Zealand’s National

Vegetation Survey Databank (Wiser, Bellingham & Burrows

2001; http://www.givd.info/ID/AU-NZ-001). As a result,

seven of the 24 original vegetation types were discarded,

whereas twelve new types were defined. The geographical

extent of vegetation types varies from quite spatially restricted

(< 150 000 ha) to widespread (>750 000 ha) (Wiser & De

Cáceres in press).

We illustrate our method by determining whether combi-

nations of vascular plants can be used as indicators for each

of the 29 vegetation types. As input data, we took the com-

munity data table (5751 sites 9 1930 vascular plant species)

and the fuzzy membership table that resulted from the sec-

ond classification analysis (Wiser & De Cáceres in press).

We derived a hard classification from the fuzzy one by

defining that a site was a member of a vegetation type if its

fuzzy membership value was higher than 0�5. Using that

rule, 3114 sites (plots) were members of one woody vegeta-

tion type or the other, whereas the remaining 2637 sites

were deemed transitional between types or were too unique

to belong to any type. The number of sites belonging to

each vegetation type ranged from 15 to 366 (see Table S1

in Supporting Information). We selected as candidates those

species occurring in at least 40% of the sites belonging to

the target vegetation type. The number of candidate species

ranged between 2 and 62 (Table S1). We considered as

potential indicators from single species up to four-species

combinations, and we calculated the positive predictive

value, sensitivity and indicator value of all of them. Positive

predictive values were calculated using cover abundance val-

ues and nonequalized indices (i.e. Aind in Table 1). We esti-

mated 95% bootstrap confidence intervals for all indices
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Fig. 2. Simulation study results showing the benefit of considering a species pair (S1 ∩ S2) as indicator of a site group (G) instead of considering sin-

gle species indicators (either S1 or S2). In panels (a) and (c), we show the difference in positive predictive value (A) between the species pair and the

maximum of S1 and S2. In panels (b) and (d), we show the difference in coverage obtained when considering the indicator based on the species pair

compared with not considering it (coverages were obtained using At = 0�6). These values are plotted as a function of the correlation between the

species and the site group (in the x-axis; both species are equally correlated with the site group) and the correlation between the two species (in the

y-axis). Panels (a) and (b) show the results for the situation where the species occurmore frequently than the target site group (P(S1) = P(S2) = 0�50,
P(G) = 0�25), whereas panels (c) and (d) show the results for species being equally frequent as the target site group (P(S1) = P(S2) = P(G) = 0�50).
Empty parts of the plots indicate parameter combinations that cannot be simulated properly (see Qaqish 2003).
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using the simple percentile method with 10 000 bootstrap

samples.

We display in Fig. 3a,b the coverage of two vegetation types

(#2 and #15) as a function of the At value used as a threshold

to determine valid indicators. These figures can be helpful to

decide on which At threshold value to use. That is, they allow

finding, by interpolation, the maximum At value that can be

used while ensuring a given coverage of the target site group.

These figures also show that the indicator value analysis often

provides indicators with larger positive predictive values A

when species combinations are considered, compared with an

analysis with single species only. In some cases (like in Fig. 3a),

this advantage allows the target site group to be predicted with

moderate or high reliability in a large fraction of its range. In

others (like in Fig. 3b), the positive predictive value of species

combinations is not very high, despite being higher than single

species, and hence the site group cannot be reliably predicted.

We selected the valid indicators using an At = 0�6 threshold
for positive predictive value and aBt = 0�25 threshold for sensi-
tivity. Considering up to four-species combinations, we

obtained valid indicators for 16 of 29 vegetation types only.

Nevertheless, our results confirmed that species combinations

often had higher predictive value than species taken individu-

ally (Fig. 4). For the remaining 13 vegetation types, reliable

assignments cannot be made using indicator species or species

combinations. In some cases, the list of valid indicators was

quite long. Because many subsets of valid indicators can have

the same coverage as the complete set, for the 16 vegetation

types with valid indicators, we reduced the list of valid indica-

tors as follows (note that many procedures would be possible

for this last task). First, we removed those indicators whose

occurrence pattern was nested within the occurrence pattern of

others (because a nested indicator will have lower sensitivity).

Second, we determined the coverage of subsets of indicators by

progressively increasing numbers of indicators until a subset

with the same coverage as the complete setwas found, or until a

maximumof four indicatorswas reached. The final sets of valid

indicators are shown in Table S2 in Supporting Information.

Weuse vegetation type#2 to illustrate how to interpret the indi-

cator value results for a given target site group.Newly surveyed

sites can be assigned to this montane shrubland type if Draco-

phyllum uniflorum is found along with Festuca novae-zelandiae

(probability of beingwrong is between 0�1 and 0�4), or ifD. uni-

florum is found with Celmisia spectabilis (probability of being

wrong is between 0�05 and 0�34).One or both combinationswill

be found in about 88%of the range of the vegetation type.

Discussion

ADVANTAGES AND LIMITATIONS OF THE METHOD

Questions that can be addressed using indicator species analy-

ses include the following: ‘Is species X strongly and signifi-

cantly restricted to a particular site group, compared to the

others?’, ‘What is the degree of habitat specialization of species

Y?’ or ‘Can we use the occurrence of species Z to determine

whether a given site belongs to a particular site group?’. Sev-

eral statistical alternatives already exist to address these ques-

tions (e.g. Dufrêne & Legendre 1997; Chytrý et al. 2002; De

Cáceres & Legendre 2009; De Cáceres, Legendre & Moretti

2010b; Chazdon, Chao & Colwell 2011; Urban et al. 2012).

To further advance the indicator species approach, our goal

was to obtain easy-to-apply rules to assign newly surveyed

sites to target site groups based on species combinations. The

kind of rules we were interested in is: ‘If you find species X, Y

and Z simultaneously occurring at a given site, you can assign

the site to the target site group with a known probability of

making a mistake’. Our method represents an important

improvement over the well-known Indicator Value method

(Dufrêne & Legendre 1997), because we have shown that spe-

cies combinations may have higher positive predictive values –

and hence be less prone to false-positive error – than species

taken individually. Another advantage of considering species

combinations is that the information about species that are
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Fig. 3. Relationship between the minimum positive predictive value

required for valid indicators (At) and the resulting coverage of the tar-

get site group. Coverage plots are shown for two site groups: (a) the

montane shrubland type #2; and (b) the forest type #15. For each At

value, valid indicators were determined comparing the lower boundary

of the 95% confidence interval for A with At. Plotted lines correspond

to coverage values obtained when considering single species indicators

only, or when considering species combinations of increasing order, up

to four species.
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frequent or dominant but are not restricted to the target site

group can be taken into account for indication purposes. For

example, one of the valid indicators that we found for the

New Zealand vegetation type #2 was the combination of

D. uniflorum and F. novae-zelandiae. Whereas D. uniflorum is

mostly restricted to this montane shrubland type (A = 0�49,
B = 1�00), F. novae-zelandiae is a common grass with only 7%

of its occurrences being in shrublands of this type (A = 0�07,
B = 0�82). Nevertheless, adding the information provided by

the occurrence and abundance of F. novae-zelandiae to the

indicator species D. uniflorum raises the positive predictive

value (from A = 0�49 to A = 0�80) without markedly decreas-

ing sensitivity (from B = 1�00 to B = 0�82).
Despite its advantages, our method is limited to the number

of species it can include in species combinations. If many spe-

cies are combined, the sensitivity of the indicator will be very

low and the uncertainty of both sensitivity and positive predic-

tive value estimates will increase. Furthermore, the number of

combinations to evaluate grows rapidly with the number of

species combined imposing computational limits. From a prac-

tical perspective, however, indicators are often meant to avoid

sampling the entire community in the field, sowe do not believe

this is a serious disadvantage if this is the goal.

Although they are related, the concept of indicator species

with species combinations differs from that of species associa-

tions (e.g. Legendre 2005; Gotelli & Ulrich 2010). Associated

species are groups of highly correlated species in one form or

another, whereas a group of species that jointly provides an

indicator for the target site group should not bemaximally cor-

related, but rather complementary in their indicative power of

a given group of sites. As a consequence, a species combina-

tion, as defined in the present paper, may not necessarily form

a species association.

Considering species combinations does not mean that

powerful indicators will magically arise for any site group

(e.g. Fig. 3b). As the definition of site groups is completely left

to the user, it is not easy to anticipate the cases where consider-

ing species combinations will be useful. However, our simula-

tion results and experience with real data sets suggest that valid

indicators are more likely to be obtained if the frequency of

occurrence of at least some species is larger than the proportion

of sites belonging to the site group.Moreover, if the beta diver-

sity of the data set is too low (i.e. low species turnover), the spe-

cies in the taxonomic group under study may perceive the

environmental conditions of the site group as similar to the

conditions prevailing at other sites. In this latter case, several

taxonomic groups may have to be tried and compared to

find valid indicators (McGeoch & Chown 1998). Finally,

one may fail to obtain valid indicators because of a small

sample size. Even in large data sets, valid indicators are unli-

kely to occur if the number of sites belonging to the site

group is too small (e.g. <10 sites). This lack of information

will normally be apparent when looking at the breadth of

the confidence intervals for A and B.

HOW DOES THIS EXTENSION OF INDICATOR VALUE

ANALYSIS RELATE TO OTHER APPROACHES?

Although we focused on indicator value indices here, many

researchers prefer to use correlation indices, such as the phi

coefficient, to measure the association between species and site

groups, especially in a vegetation context (Chytrý et al. 2002;

Willner, Tichý & Chytrý 2009). Our approach can be extended

to correlation indices. Indeed, one can straightforwardly use

matrix C to calculate correlation indices for species combina-

tions. Graphs can also be easily obtained to examine the cover-

age of the target site group as a function of the desired level of

correlation between indicators and the site group (Fig. 3). As

correlation indices cannot be decomposed into components

that express the predictive value of indicators and hence do not
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Fig. 4. Coverage of the 29 NZ woody vegetation types (i.e. percentage of each type covered by valid indicators) obtained when considering indica-

tors of increasing order, from singletons up to combinations of four species. Valid indicators are those whose 95% confidence interval lower bound

for A is higher than 0�6 and the corresponding lower bound for B is higher than 0�25. The indicator value results obtained using up to four-species

combinations are given in Appendices S1 and S2 in Supporting Information.
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allow one to obtain the kind of rules we were interested in, we

did not explicitly describe these parallel methods here.

The generalization from single species to species combina-

tions is also compatible with other modifications that have

been proposed to overcome the limitations of the original indi-

cator value method (e.g. Podani & Csányi 2010; Urban et al.

2012). For example, Urban et al. (2012) have recently pointed

out that indicator value analyses can produce biased estimates

if differences between site groups in species detection probabili-

ties are not taken into account. Their proposal, consisting in

using N-mixture models and a Bayesian inference framework,

could be incorporated into our approach by replacing the

input data tableXwith a ‘corrected’ table of abundance/occur-

rence produced by their method. Other extensions/modifica-

tions of the indicator value method are, by definition, less

amenable to the consideration of species combinations (e.g.

Baker & King 2010; De Cáceres, Legendre & Moretti 2010b).

For example, De Cáceres, Legendre & Moretti (2010b)

extended the indicator value method to determine whether the

a given species was associated with multiple site groups instead

of a single one. As the focus of that extension was to character-

ize the niche breadth of the species, considering species combi-

nations does not reallymake sense in that context.

POTENTIAL APPLICATIONS

The use of indicator species tomonitor or assess environmental

conditions, or to determine habitat or community types, is a

firmly established tradition for both theoretical and applied

purposes. A suite of indicator variables rather than single indi-

cators has been recommended to increase the reliability of bio-

indication systems (Carignan & Villard 2002). Therefore, one

of the applications we envisage for the newmethod is the devel-

opment of multispecies ecological or environmental indicators

(McGeoch 1998;Niemi &McDonald 2004; Butler et al. 2012).

Another important application, illustrated in this paper, is

motivated by the need for vegetation classification schemes to

provide rules that allow new vegetation observations to be

assigned to previously defined vegetation types. As vegetation

types are often defined using the complete composition of vas-

cular plants, in order to be consistent with the original classifi-

cation, assignment rules should also be based on full

vegetation plots (De Cáceres & Wiser 2012). When complete

composition is available, there are several alternatives for

assigning vegetation plot records to predefined vegetation

types (e.g. Kočı́, Chytrý & Tichý 2003; van Tongeren,

Gremmen & Hennekens 2008; De Cáceres et al. 2009), which

are preferable to the approach presented here. However, in

many cases, vegetation surveys need to be conducted rapidly

and with limited resources, such as for vegetation mapping. In

such situations, it may be desirable to survey the largest possi-

ble number of localities, but simplify the fieldwork protocol by

focusing on a small subset of species that have high predictive

value. Our method provides a useful tool for this task. If, at a

given site, one finds a species combination with high predictive

value, the site can be assigned with confidence to the indicated

type. If none of the valid indicators is found, then a full vegeta-

tion plotmay need to be conducted.

Users of the method should bear in mind that when site

groups have been defined using species composition data, they

are by definition nonindependent from species. In these cases,

the indicator value statistic will be larger than the value

expected under the null hypothesis of independence, leading to

a high rate of rejection in inferential tests (DeCáceres &Legen-

dre 2009; De Cáceres, Legendre & Moretti 2010b). When

confidence intervals are being used to assessing the uncertainty

of the estimation, however, they are still valid.
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